BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 10329550)

  • 1. Limitation of Tat-associated transcriptional processivity in HIV-infected PBMC.
    Adams M; Wong C; Wang D; Romeo J
    Virology; 1999 May; 257(2):397-405. PubMed ID: 10329550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication.
    McAllister JJ; Phillips D; Millhouse S; Conner J; Hogan T; Ross HL; Wigdahl B
    Virology; 2000 Sep; 274(2):262-77. PubMed ID: 10964770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator.
    Marcello A; Zoppé M; Giacca M
    IUBMB Life; 2001 Mar; 51(3):175-81. PubMed ID: 11547919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIV-1 tat transcriptional activity is regulated by acetylation.
    Kiernan RE; Vanhulle C; Schiltz L; Adam E; Xiao H; Maudoux F; Calomme C; Burny A; Nakatani Y; Jeang KT; Benkirane M; Van Lint C
    EMBO J; 1999 Nov; 18(21):6106-18. PubMed ID: 10545121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the small leader exons 2 and 3 on human immunodeficiency virus type 1 gene expression.
    Krummheuer J; Lenz C; Kammler S; Scheid A; Schaal H
    Virology; 2001 Aug; 286(2):276-89. PubMed ID: 11485396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human immunodeficiency virus type 1 Tat-dependent activation of an arrested RNA polymerase II elongation complex.
    Liu Y; Suñé C; Garcia-Blanco MA
    Virology; 1999 Mar; 255(2):337-46. PubMed ID: 10069959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tackling Tat.
    Karn J
    J Mol Biol; 1999 Oct; 293(2):235-54. PubMed ID: 10550206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of HIV-1 replication in chronically infected cell lines and peripheral blood mononuclear cells by retrovirus-mediated antitat gene transfer.
    Li Y; Starr SE; Lisziewicz J; Ho WZ
    Gene Ther; 2000 Feb; 7(4):321-8. PubMed ID: 10694813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular viral rebound after cessation of potent antiretroviral therapy predicted by levels of multiply spliced HIV-1 RNA encoding nef.
    Fischer M; Joos B; Hirschel B; Bleiber G; Weber R; Günthard HF;
    J Infect Dis; 2004 Dec; 190(11):1979-88. PubMed ID: 15529263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA.
    Zhou M; Deng L; Kashanchi F; Brady JN; Shatkin AJ; Kumar A
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12666-71. PubMed ID: 14569024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High level inhibition of HIV replication with combination RNA decoys expressed from an HIV-Tat inducible vector.
    Fraisier C; Irvine A; Wrighton C; Craig R; Dzierzak E
    Gene Ther; 1998 Dec; 5(12):1665-76. PubMed ID: 10023446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer of Tat and release of TAR RNA during the activation of the human immunodeficiency virus type-1 transcription elongation complex.
    Keen NJ; Churcher MJ; Karn J
    EMBO J; 1997 Sep; 16(17):5260-72. PubMed ID: 9311986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and sensitive detection of cell-associated HIV-1 in latently infected cell lines and in patient cells using sodium-n-butyrate induction and RT-PCR.
    Kashanchi F; Melpolder JC; Epstein JS; Sadaie MR
    J Med Virol; 1997 Jun; 52(2):179-89. PubMed ID: 9179766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H. saimiri tyrosine-kinase interacting protein inhibits Tat function: a prototypic strategy for restricting HIV-1-induced cytopathic effects in immune cells.
    Raymond AD; Hasham M; Tsygankov AY; Henderson EE
    Virology; 2006 Sep; 352(2):253-67. PubMed ID: 16780912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Productive human immunodeficiency virus type 1 infection in peripheral blood predominantly takes place in CD4/CD8 double-negative T lymphocytes.
    Kaiser P; Joos B; Niederöst B; Weber R; Günthard HF; Fischer M
    J Virol; 2007 Sep; 81(18):9693-706. PubMed ID: 17609262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The HIV-1 Tat transactivator protein: a therapeutic target?
    Fulcher AJ; Jans DA
    IUBMB Life; 2003 Dec; 55(12):669-80. PubMed ID: 14769003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tat acetylation: a regulatory switch between early and late phases in HIV transcription elongation.
    Ott M; Dorr A; Hetzer-Egger C; Kaehlcke K; Schnolzer M; Henklein P; Cole P; Zhou MM; Verdin E
    Novartis Found Symp; 2004; 259():182-93; discussion 193-6, 223-5. PubMed ID: 15171254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blocking of Tat-dependent HIV-1 RNA modification by an inhibitor of RNA polymerase II processivity.
    Braddock M; Thorburn AM; Kingsman AJ; Kingsman SM
    Nature; 1991 Apr; 350(6317):439-41. PubMed ID: 2011194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIV-1 Tat: coping with negative elongation factors.
    Garber ME; Jones KA
    Curr Opin Immunol; 1999 Aug; 11(4):460-5. PubMed ID: 10448148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation.
    Williams SA; Chen LF; Kwon H; Ruiz-Jarabo CM; Verdin E; Greene WC
    EMBO J; 2006 Jan; 25(1):139-49. PubMed ID: 16319923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.