These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 10329990)

  • 1. Redox-dependent and redox-independent subcomponents of protein degradation in perfused myocardium.
    Lockwood TD
    Am J Physiol; 1999 May; 276(5):E945-54. PubMed ID: 10329990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of intracellular proteolysis and cathepsin B enzyme activity by dehydroascorbic acid and reactivation by dithiothreitol in perfused rat heart.
    Lockwood TD
    Biochem Pharmacol; 1997 Sep; 54(6):669-75. PubMed ID: 9310343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox control of protein degradation.
    Lockwood TD
    Antioxid Redox Signal; 2000; 2(4):851-78. PubMed ID: 11213489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four proteolytic processes of myocardium, one insensitive to thiol reactive agents and thiol protease inhibitor.
    Thorne DP; Lockwood TD
    Am J Physiol; 1993 Jul; 265(1 Pt 1):E10-9. PubMed ID: 8338141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cathepsin B responsiveness to glutathione and lipoic acid redox.
    Lockwood TD
    Antioxid Redox Signal; 2002 Aug; 4(4):681-91. PubMed ID: 12230881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous response of myocardial contractility and a major proteolytic process to beta-adrenergic-receptor occupancy in the Langendorff isolated perfused rat heart.
    Lockwood TD
    Biochem J; 1985 Oct; 231(2):299-308. PubMed ID: 2998346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox pacing of proteome turnover: influences of glutathione and ketonemia.
    Lockwood TD
    Arch Biochem Biophys; 2003 Sep; 417(2):183-93. PubMed ID: 12941300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of glutathione disulfide and the maintenance of reducing equivalents in hypoxic hearts after the infusion of diamide.
    Lund LG; Paraidathathu T; Kehrer JP
    Toxicology; 1994 Nov; 93(2-3):249-62. PubMed ID: 7974518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinction between major chloroquine-inhibitable and adrenergic-responsive pathways of protein degradation and their relation to tissue ATP content in the Langendorff isolated perfused rat heart.
    Lockwood TD
    Biochem J; 1988 Apr; 251(2):341-6. PubMed ID: 3401210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenylalaninylargininylarginine: a novel tripeptide exerting Zn(2+)-dependent, insulin-mimetic inhibitory action on myocardial proteolysis.
    Zhang L; Lockwood TD
    Biochem J; 1993 Aug; 293 ( Pt 3)(Pt 3):801-5. PubMed ID: 8352749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of redox potential on protein degradation in perfused rat heart.
    Chua BH; Kleinhans BJ
    Am J Physiol; 1985 Jun; 248(6 Pt 1):E726-31. PubMed ID: 3890558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Zn2+ on the proteolytic inhibitory action of insulin and biguanide antihyperglycemic drugs.
    Thorne DP; Lockwood TD
    Diabetes; 1991 May; 40(5):612-20. PubMed ID: 1902428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of insulin, biguanide antihyperglycaemic agents and beta-adrenergic agonists on pathways of myocardial proteolysis.
    Thorne DP; Lockwood TD
    Biochem J; 1990 Mar; 266(3):713-8. PubMed ID: 1970236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulatory and inhibitory effects of hydrogen peroxide, diamide and vitamin K-5 on sugar transport in rat soleus muscle.
    Forsayeth J; Gould MK
    Biochim Biophys Acta; 1983 Sep; 759(3):184-91. PubMed ID: 6882798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism.
    Collins-Nakai RL; Noseworthy D; Lopaschuk GD
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1862-71. PubMed ID: 7977816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effect of ascorbic acid on the breakdown of proteins exposed to hydrogen peroxide in chicken skeletal muscle.
    Gecha OM; Fagan JM
    J Nutr; 1992 Nov; 122(11):2087-93. PubMed ID: 1432249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apoptosis in mitotic competent undifferentiated cells is induced by cellular redox imbalance independent of reactive oxygen species production.
    Pias EK; Aw TY
    FASEB J; 2002 Jun; 16(8):781-90. PubMed ID: 12039859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of anoxia and low free fatty acid on myocardial energy metabolism in streptozotocin-diabetic rats.
    Mokuda O; Sakamoto Y; Ikeda T; Mashiba H
    Ann Nutr Metab; 1990; 34(5):259-65. PubMed ID: 2244747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K(ATP)-channel activation: effects on myocardial recovery from ischaemia and role in the cardioprotective response to adenosine A1-receptor stimulation.
    Ford WR; Lopaschuk GD; Schulz R; Clanachan AS
    Br J Pharmacol; 1998 Jun; 124(4):639-46. PubMed ID: 9690854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.