These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10330121)

  • 1. Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases.
    Hammell AB; Taylor RC; Peltz SW; Dinman JD
    Genome Res; 1999 May; 9(5):417-27. PubMed ID: 10330121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased peptidyltransferase activity correlates with increased programmed -1 ribosomal frameshifting and viral maintenance defects in the yeast Saccharomyces cerevisiae.
    Meskauskas A; Harger JW; Jacobs KL; Dinman JD
    RNA; 2003 Aug; 9(8):982-92. PubMed ID: 12869709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RECODE: a database of frameshifting, bypassing and codon redefinition utilized for gene expression.
    Baranov PV; Gurvich OL; Fayet O; Prère MF; Miller WA; Gesteland RF; Atkins JF; Giddings MC
    Nucleic Acids Res; 2001 Jan; 29(1):264-7. PubMed ID: 11125107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of programmed ribosomal frameshifting in the TERT genes of Euplotes.
    Möllenbeck M; Gavin MC; Klobutcher LA
    J Mol Evol; 2004 Jun; 58(6):701-11. PubMed ID: 15461427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A programmed -1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element.
    Plant EP; Wang P; Jacobs JL; Dinman JD
    Nucleic Acids Res; 2004; 32(2):784-90. PubMed ID: 14762205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of +1 programmed frameshifting signals and frameshift-regulating tRNAs in the order Saccharomycetales.
    Farabaugh PJ; Kramer E; Vallabhaneni H; Raman A
    J Mol Evol; 2006 Oct; 63(4):545-61. PubMed ID: 16838213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmed frameshifting in the synthesis of mammalian antizyme is +1 in mammals, predominantly +1 in fission yeast, but -2 in budding yeast.
    Ivanov IP; Gesteland RF; Matsufuji S; Atkins JF
    RNA; 1998 Oct; 4(10):1230-8. PubMed ID: 9769097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA.
    Yordanova MM; Wu C; Andreev DE; Sachs MS; Atkins JF
    J Biol Chem; 2015 Jul; 290(29):17863-17878. PubMed ID: 25998126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FSDB: a frameshift signal database.
    Moon S; Byun Y; Han K
    Comput Biol Chem; 2007 Aug; 31(4):298-302. PubMed ID: 17631420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antizyme expression: a subversion of triplet decoding, which is remarkably conserved by evolution, is a sensor for an autoregulatory circuit.
    Ivanov IP; Gesteland RF; Atkins JF
    Nucleic Acids Res; 2000 Sep; 28(17):3185-96. PubMed ID: 10954585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ASXL gain-of-function truncation mutants: defective and dysregulated forms of a natural ribosomal frameshifting product?
    Dinan AM; Atkins JF; Firth AE
    Biol Direct; 2017 Oct; 12(1):24. PubMed ID: 29037253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting.
    Taliaferro D; Farabaugh PJ
    RNA; 2007 Apr; 13(4):606-13. PubMed ID: 17329356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A -1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA.
    Barry JK; Miller WA
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11133-8. PubMed ID: 12149516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recoding in bacteriophages and bacterial IS elements.
    Baranov PV; Fayet O; Hendrix RW; Atkins JF
    Trends Genet; 2006 Mar; 22(3):174-81. PubMed ID: 16460832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FSscan: a mechanism-based program to identify +1 ribosomal frameshift hotspots.
    Liao PY; Choi YS; Lee KH
    Nucleic Acids Res; 2009 Nov; 37(21):7302-11. PubMed ID: 19783813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slippy-Sloppy translation: a tale of programmed and induced-ribosomal frameshifting.
    Champagne J; Mordente K; Nagel R; Agami R
    Trends Genet; 2022 Nov; 38(11):1123-1133. PubMed ID: 35641342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KnotInFrame: prediction of -1 ribosomal frameshift events.
    Theis C; Reeder J; Giegerich R
    Nucleic Acids Res; 2008 Oct; 36(18):6013-20. PubMed ID: 18820303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A second mammalian antizyme: conservation of programmed ribosomal frameshifting.
    Ivanov IP; Gesteland RF; Atkins JF
    Genomics; 1998 Sep; 52(2):119-29. PubMed ID: 9782076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the frameshift signal of Edr, a mammalian example of programmed -1 ribosomal frameshifting.
    Manktelow E; Shigemoto K; Brierley I
    Nucleic Acids Res; 2005; 33(5):1553-63. PubMed ID: 15767280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.