These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 10330224)

  • 1. Role of adenosine in local metabolic coronary vasodilation.
    Yada T; Richmond KN; Van Bibber R; Kroll K; Feigl EO
    Am J Physiol; 1999 May; 276(5):H1425-33. PubMed ID: 10330224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of K+ATP channels in local metabolic coronary vasodilation.
    Richmond KN; Tune JD; Gorman MW; Feigl EO
    Am J Physiol; 1999 Dec; 277(6):H2115-23. PubMed ID: 10600828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of adenosine in norepinephrine-induced coronary vasodilation.
    Van Bibber R; Stepp DW; Kroll K; Feigl EO
    Am J Physiol; 1997 Aug; 273(2 Pt 2):H557-65. PubMed ID: 9277469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K(ATP)(+) channels, nitric oxide, and adenosine are not required for local metabolic coronary vasodilation.
    Tune JD; Richmond KN; Gorman MW; Feigl EO
    Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H868-75. PubMed ID: 11158988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise.
    Tune JD; Richmond KN; Gorman MW; Olsson RA; Feigl EO
    Am J Physiol Heart Circ Physiol; 2000 Jan; 278(1):H74-84. PubMed ID: 10644586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous adenosine mediates coronary vasodilation during exercise after K(ATP)+ channel blockade.
    Duncker DJ; van Zon NS; Pavek TJ; Herrlinger SK; Bache RJ
    J Clin Invest; 1995 Jan; 95(1):285-95. PubMed ID: 7814627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feedforward sympathetic coronary vasodilation in exercising dogs.
    Gorman MW; Tune JD; Richmond KN; Feigl EO
    J Appl Physiol (1985); 2000 Nov; 89(5):1892-902. PubMed ID: 11053341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of K(ATP)(+) channels and adenosine in the control of coronary blood flow during exercise.
    Richmond KN; Tune JD; Gorman MW; Feigl EO
    J Appl Physiol (1985); 2000 Aug; 89(2):529-36. PubMed ID: 10926635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise.
    Ishibashi Y; Duncker DJ; Zhang J; Bache RJ
    Circ Res; 1998 Feb; 82(3):346-59. PubMed ID: 9486663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of adenosine in coronary vasodilation during exercise.
    Bache RJ; Dai XZ; Schwartz JS; Homans DC
    Circ Res; 1988 Apr; 62(4):846-53. PubMed ID: 3349577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of adenosine-mediated coronary vasodilation exacerbates myocardial ischemia during exercise.
    Laxson DD; Homans DC; Bache RJ
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1471-7. PubMed ID: 8238557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs.
    Tune JD; Richmond KN; Gorman MW; Feigl EO
    Circulation; 2000 Jun; 101(25):2942-8. PubMed ID: 10869267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of feedforward sympathetic coronary vasodilation in exercising dogs.
    Gorman MW; Tune JD; Richmond KN; Feigl EO
    J Appl Physiol (1985); 2000 Nov; 89(5):1903-11. PubMed ID: 11053342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of myocardial blood flow by oxygen consumption is maintained in the failing heart during exercise.
    Traverse JH; Melchert P; Pierpont GL; Jones B; Crampton M; Bache RJ
    Circ Res; 1999 Mar; 84(4):401-8. PubMed ID: 10066674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of pertussis toxin-sensitive G protein in metabolic vasodilation of coronary microcirculation.
    Tanikawa T; Kanatsuka H; Koshida R; Tanaka M; Sugimura A; Kumagai T; Miura M; Komaru T; Shirato K
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1819-29. PubMed ID: 11009469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of adenosine in regulation of coronary flow in dogs with inhibited synthesis of endothelium-derived nitric oxide.
    Matsunaga T; Okumura K; Tsunoda R; Tayama S; Tabuchi T; Yasue H
    Am J Physiol; 1996 Feb; 270(2 Pt 2):H427-34. PubMed ID: 8779816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blunted coronary vasodilator response to uridine adenosine tetraphosphate in post-infarct remodeled myocardium is due to reduced P1 receptor activation.
    Zhou Z; de Wijs-Meijler D; Lankhuizen I; Jankowski J; Jankowski V; Jan Danser AH; Duncker DJ; Merkus D
    Pharmacol Res; 2013 Nov; 77():22-9. PubMed ID: 23994209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of K+ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure.
    Traverse JH; Chen Y; Hou M; Li Y; Bache RJ
    Circ Res; 2007 Jun; 100(11):1643-9. PubMed ID: 17478726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K+ATP channels and adenosine are not necessary for coronary autoregulation.
    Stepp DW; Kroll K; Feigl EO
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1299-308. PubMed ID: 9321819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedforward control of coronary blood flow via coronary beta-receptor stimulation.
    Miyashiro JK; Feigl EO
    Circ Res; 1993 Aug; 73(2):252-63. PubMed ID: 8392446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.