These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Power dissipated measurement of an ultrasonic generator in a viscous medium by flowmetric method. Mancier V; Leclercq D Ultrason Sonochem; 2008 Sep; 15(6):973-80. PubMed ID: 18472294 [TBL] [Abstract][Full Text] [Related]
3. Diversity of biomedical applications of acoustic radiation force. Sarvazyan A Ultrasonics; 2010 Feb; 50(2):230-4. PubMed ID: 19880152 [TBL] [Abstract][Full Text] [Related]
4. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method. Hoche S; Hussein MA; Becker T Ultrasonics; 2015 Mar; 57():65-71. PubMed ID: 25465962 [TBL] [Abstract][Full Text] [Related]
5. Rapid and Efficient Computation of Cell Paths During Ultrasonic Focusing. Babbs CF; Lang MV Ultrason Imaging; 2023 Sep; 45(5-6):227-239. PubMed ID: 37644766 [TBL] [Abstract][Full Text] [Related]
6. Notes on radial oscillations of gas bubbles in liquids: thermal effects. Zhang Y; Li SC J Acoust Soc Am; 2010 Nov; 128(5):EL306-9. PubMed ID: 21110543 [TBL] [Abstract][Full Text] [Related]
9. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound. Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995 [TBL] [Abstract][Full Text] [Related]
10. A review of the processes by which ultrasound is generated through the interaction of ionizing radiation and irradiated materials: some possible applications. Baily NA Med Phys; 1992; 19(3):525-32. PubMed ID: 1508086 [TBL] [Abstract][Full Text] [Related]
11. Full-wave modeling of therapeutic ultrasound: nonlinear ultrasound propagation in ideal fluids. Ginter S; Liebler M; Steiger E; Dreyer T; Riedlinger RE J Acoust Soc Am; 2002 May; 111(5 Pt 1):2049-59. PubMed ID: 12051425 [TBL] [Abstract][Full Text] [Related]
12. Extension of the mode method for viscoelastic media and focused ultrasonic beams. Vandeputte J; Leroy O; Briers R; Shkerdin G J Acoust Soc Am; 2000 Oct; 108(4):1614-21. PubMed ID: 11051489 [TBL] [Abstract][Full Text] [Related]
13. A small volume thermodynamic system for B/A measurement. Zhang J; Dunn F J Acoust Soc Am; 1991 Jan; 89(1):73-9. PubMed ID: 1825834 [TBL] [Abstract][Full Text] [Related]
14. Effect of acoustic streaming on ultrasonic heating. Wu J; Winkler AJ; O'Neill TP Ultrasound Med Biol; 1994; 20(2):195-201. PubMed ID: 8023432 [TBL] [Abstract][Full Text] [Related]
15. Improvement of acoustic theory of ultrasonic waves in dilute bubbly liquids. Ando K; Colonius T; Brennen CE J Acoust Soc Am; 2009 Sep; 126(3):EL69-74. PubMed ID: 19739700 [TBL] [Abstract][Full Text] [Related]
16. A theoretical study of hydrodynamic cavitation. Arrojo S; Benito Y Ultrason Sonochem; 2008 Mar; 15(3):203-11. PubMed ID: 17532249 [TBL] [Abstract][Full Text] [Related]
17. The effect of shear and extensional viscosities on atomization of Newtonian and non-Newtonian fluids in ultrasonic inhaler. Broniarz-Press L; Sosnowski TR; Matuszak M; Ochowiak M; Jabłczyńska K Int J Pharm; 2015 May; 485(1-2):41-9. PubMed ID: 25735665 [TBL] [Abstract][Full Text] [Related]