These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 1033072)
41. Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Pijnenburg AJ; Honig WM; Van der Heyden JA; Van Rossum JM Eur J Pharmacol; 1976 Jan; 35(1):45-58. PubMed ID: 3421 [TBL] [Abstract][Full Text] [Related]
42. The locomotor and stereotype response to dopaminergic drugs and caffeine after intracerebroventricular kainic acid in rats. Kleinrok Z; Turski L; Wawrzyniak M; Cybulska R Pol J Pharmacol Pharm; 1981; 33(2):149-59. PubMed ID: 7198226 [TBL] [Abstract][Full Text] [Related]
43. 6-Hydroxydopamine lesions of olfactory tubercles and caudate nuclei: effect on amphetamine-induced stereotyped behavior in rats. Asher IM; Aghajanian GK Brain Res; 1974 Dec; 82(1):1-12. PubMed ID: 4373138 [No Abstract] [Full Text] [Related]
44. Effects of the 5-HT3 receptor antagonist, GR38032F, on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain. Costall B; Domeney AM; Naylor RJ; Tyers MB Br J Pharmacol; 1987 Dec; 92(4):881-94. PubMed ID: 2962686 [TBL] [Abstract][Full Text] [Related]
45. Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine-induced lesions of the nucleus accumbens. Robbins TW; Roberts DC; Koob GF J Pharmacol Exp Ther; 1983 Mar; 224(3):662-73. PubMed ID: 6402587 [TBL] [Abstract][Full Text] [Related]
46. Stimulant properties of bromocriptine on central dopamine receptors in comparison to apomorphine, (+)-amphetamine and L-DOPA. Johnson AM; Loew DM; Vigouret JM Br J Pharmacol; 1976 Jan; 56(1):59-68. PubMed ID: 943193 [TBL] [Abstract][Full Text] [Related]
47. Mesolimbic involvement in the locomotor stimulant action of thyrotropin-releasing hormone (TRH) in rats. Miyamoto M; Nagawa Y Eur J Pharmacol; 1977 Jul; 44(2):143-52. PubMed ID: 407089 [TBL] [Abstract][Full Text] [Related]
48. 2-Bromolisuride, an ergot derivative, with dopamine antagonistic and serotonin agonistic properties. Fink H; Morgenstern R; Ott T Pharmacol Biochem Behav; 1991 Feb; 38(2):321-5. PubMed ID: 1905409 [TBL] [Abstract][Full Text] [Related]
49. Enkephalin action on the mesolimbic system: a dopamine-dependent and a dopamine-independent increase in locomotor activity. Kalivas PW; Widerlöv E; Stanley D; Breese G; Prange AJ J Pharmacol Exp Ther; 1983 Oct; 227(1):229-37. PubMed ID: 6620168 [TBL] [Abstract][Full Text] [Related]
50. Comparison of tyrosine hydroxylase and dopamine-beta-hydroxylase inhibition with the effects of various 6-hydroxydopamine treatments on d-amphetamine induced motor activity. Hollister AS; Breese GR; Cooper BR Psychopharmacologia; 1974 Mar; 36(1):1-16. PubMed ID: 4151923 [No Abstract] [Full Text] [Related]
51. Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum. II. No effect on denervation or neuroleptic-induced supersensitivity. Staunton DA; Magistretti PJ; Shoemaker WJ; Deyo SN; Bloom FE Brain Res; 1982 Jan; 232(2):401-12. PubMed ID: 6322915 [TBL] [Abstract][Full Text] [Related]
52. In vivo electrochemical and behavioral evidence for specific neural substrates modulated differentially by enkephalin in rat stimulant stereotypy and locomotion. Broderick PA; Gardner EL; van Praag HM Biol Psychiatry; 1984 Jan; 19(1):45-54. PubMed ID: 6538442 [TBL] [Abstract][Full Text] [Related]
53. Lidocaine kindling is accompanied by an increase in apomorphine stereotypy and mesolimbic dopamine D2 receptor density. Csernansky JG; Csernansky CA; Glick SA; Hollister LE Psychopharmacol Bull; 1985; 21(3):707-11. PubMed ID: 2930865 [No Abstract] [Full Text] [Related]
54. Mesolimbic and mesocortical dopaminergic neurons are necessary for normal exploratory behavior in rats. Fink JS; Smith GP Neurosci Lett; 1980 Apr; 17(1-2):61-5. PubMed ID: 6820483 [TBL] [Abstract][Full Text] [Related]
55. The rotating rodent: a two component system? Pycock CJ; Marsden CD Eur J Pharmacol; 1978 Jan; 47(2):167-75. PubMed ID: 340238 [TBL] [Abstract][Full Text] [Related]
56. Increased responsiveness of mesolimbic and mesostriatal dopamine neurons to cocaine following repeated administration of a selective kappa-opioid receptor agonist. Heidbreder CA; Schenk S; Partridge B; Shippenberg TS Synapse; 1998 Nov; 30(3):255-62. PubMed ID: 9776129 [TBL] [Abstract][Full Text] [Related]
57. Initial increases in extracellular dopamine in the ventral tegmental area provide a mechanism for the development of desipramine-induced sensitization within the midbrain dopamine system. Stewart J; Rajabi H Synapse; 1996 Aug; 23(4):258-64. PubMed ID: 8855510 [TBL] [Abstract][Full Text] [Related]
58. Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: quantification using the rotational model. Marshall JF; Ungerstedt U Eur J Pharmacol; 1977 Feb; 41(4):361-7. PubMed ID: 557411 [TBL] [Abstract][Full Text] [Related]
59. 6-Hydroxydopamine lesions of the olfactory tubercle do not alter (+)-amphetamine-conditioned place preference. Clarke PB; White NM; Franklin KB Behav Brain Res; 1990 Jan; 36(1-2):185-8. PubMed ID: 2105735 [TBL] [Abstract][Full Text] [Related]
60. Effects of N-allylnormetazocine (SKF 10,047), phencyclidine, and other psychomotor stimulants in the rat following 6-hydroxydopamine lesion of the ventral tegmental area. French ED Neuropharmacology; 1986 Apr; 25(4):447-50. PubMed ID: 2872611 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]