BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 10331431)

  • 1. Monoclonal antibody to human midkine reveals increased midkine expression in human brain tumors.
    Kato S; Ishihara K; Shinozawa T; Yamaguchi H; Asano Y; Saito M; Kato M; Terada T; Awaya A; Hirano A; Dickson DW; Yen SH; Ohama E
    J Neuropathol Exp Neurol; 1999 May; 58(5):430-41. PubMed ID: 10331431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain tumor: immunohistochemical studies on the stress-response proteins, p53 protein and proliferating cell nuclear antigen.
    Kato S; Morita T; Hori T; Kato M; Hirano A; Herz F; Ohama E
    Noshuyo Byori; 1995; 12(2):125-32. PubMed ID: 8867693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The immunohistochemical expression of stress-response protein (srp) 60 in human brain tumours: relationship of srp 60 to the other five srps, proliferating cell nuclear antigen and p53 protein.
    Kato S; Kato M; Hirano A; Takikawa M; Ohama E
    Histol Histopathol; 2001 Jul; 16(3):809-20. PubMed ID: 11510971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monoclonal antibody to stage-specific fetal brain 68-kDa glycoprotein (FGP68) revealed increased FGP68 expression in human primary brain tumors.
    Kato S; Shinozawa T; Nagashige H; Nakamura M; Asano Y; Takikawa M; Kato M; Awaya A; Hirano A; Ohama E
    Acta Neuropathol; 2002 Jul; 104(1):57-66. PubMed ID: 12070665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunohistochemical expression of inducible nitric oxide synthase (iNOS) in human brain tumors: relationships of iNOS to superoxide dismutase (SOD) proteins (SOD1 and SOD2), Ki-67 antigen (MIB-1) and p53 protein.
    Kato S; Esumi H; Hirano A; Kato M; Asayama K; Ohama E
    Acta Neuropathol; 2003 Apr; 105(4):333-40. PubMed ID: 12624786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased expression of midkine during the progression of human astrocytomas.
    Mishima K; Asai A; Kadomatsu K; Ino Y; Nomura K; Narita Y; Muramatsu T; Kirino T
    Neurosci Lett; 1997 Sep; 233(1):29-32. PubMed ID: 9324232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased midkine expression in intrahepatic cholangiocarcinoma: immunohistochemical and in situ hybridization analyses.
    Kato M; Shinozawa T; Kato S; Endo K; Terada T
    Liver; 2000 Jun; 20(3):216-21. PubMed ID: 10902971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased midkine expression in hepatocellular carcinoma.
    Kato M; Shinozawa T; Kato S; Awaya A; Terada T
    Arch Pathol Lab Med; 2000 Jun; 124(6):848-52. PubMed ID: 10835519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemical and in situ hybridization analyses of midkine expression in thyroid papillary carcinoma.
    Kato M; Maeta H; Kato S; Shinozawa T; Terada T
    Mod Pathol; 2000 Oct; 13(10):1060-5. PubMed ID: 11048798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent expression of midkine in the human fetal liver and kidney: immunohistochemical analysis of developmental changes in hilar primitive bile ducts and hepatocytes.
    Kato M; Shinozawa T; Kato S; Terada T
    Liver; 2000 Dec; 20(6):475-81. PubMed ID: 11169062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Midkine expression in oral squamous cell carcinoma and leukoplakia.
    Jham BC; Costa NL; Silva JM; de Miranda AC; Oliveira JC; Silva TA; Batista AC
    J Oral Pathol Med; 2012 Jan; 41(1):21-6. PubMed ID: 21595751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of p53 mutations in proliferating vascular cells in glioblastoma multiforme.
    Kawasoe T; Takeshima H; Yamashita S; Mizuguchi S; Fukushima T; Yokogami K; Yamasaki K
    J Neurosurg; 2015 Feb; 122(2):317-23. PubMed ID: 25415071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Midkine expression in transient retinal ischemia in the rat.
    Miyashiro M; Kadomatsu K; Ogata N; Yamamoto C; Takahashi K; Uyama M; Muramatsu H; Muramatsu T
    Curr Eye Res; 1998 Jan; 17(1):9-13. PubMed ID: 9472465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical and prognostic significance of Ki-67 and proliferating cell nuclear antigen expression in childhood primitive neuroectodermal brain tumors.
    Bodey B; Bodey B; Gröger AM; Siegel SE; Kaiser HE
    Anticancer Res; 1997; 17(1A):189-96. PubMed ID: 9066650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of proliferating cell nuclear antigen (PCNA) in the adult and developing mouse nervous system.
    Ino H; Chiba T
    Brain Res Mol Brain Res; 2000 May; 78(1-2):163-74. PubMed ID: 10891596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunohistochemical expression of the estrogen receptor-related antigen (ER-D5) in human intracranial tumors.
    Khalid H; Yasunaga A; Kishikawa M; Shibata S
    Cancer; 1995 May; 75(10):2571-8. PubMed ID: 7736403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The angiogenic factor midkine is aberrantly expressed in NF1-deficient Schwann cells and is a mitogen for neurofibroma-derived cells.
    Mashour GA; Ratner N; Khan GA; Wang HL; Martuza RL; Kurtz A
    Oncogene; 2001 Jan; 20(1):97-105. PubMed ID: 11244508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Formation of specific complex of SV40 large tumor antigen and p53 in human brain tumors].
    Zhen H; Zhang X; Bu X
    Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi; 2001 Mar; 15(1):73-6. PubMed ID: 12526309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between SATB1 and Bcl-2 expression in human glioblastoma multiforme.
    Chu SH; Ma YB; Feng DF; Li ZQ; Jiang PC
    Mol Med Rep; 2013 Jan; 7(1):139-43. PubMed ID: 23076250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aberrant p53 expression in astrocytic neoplasms of the brain: association with proliferation.
    Haapasalo H; Isola J; Sallinen P; Kalimo H; Helin H; Rantala I
    Am J Pathol; 1993 May; 142(5):1347-51. PubMed ID: 7684193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.