These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 10331606)

  • 21. Transport kinetics of FMRP containing the I304N mutation of severe fragile X syndrome in neurites of living rat PC12 cells.
    Schrier M; Severijnen LA; Reis S; Rife M; van't Padje S; van Cappellen G; Oostra BA; Willemsen R
    Exp Neurol; 2004 Oct; 189(2):343-53. PubMed ID: 15380484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. X-ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids.
    Backe PH; Messias AC; Ravelli RB; Sattler M; Cusack S
    Structure; 2005 Jul; 13(7):1055-67. PubMed ID: 16004877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fragile X syndrome, the Fragile X related proteins, and animal models.
    Hoogeveen AT; Willemsen R; Oostra BA
    Microsc Res Tech; 2002 May; 57(3):148-55. PubMed ID: 12112450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions.
    Mueller TD; Feigon J
    J Mol Biol; 2002 Jun; 319(5):1243-55. PubMed ID: 12079361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The binding activity of yeast RNAs to yeast Hek2p and mammalian hnRNP K proteins, determined using the three-hybrid system.
    Paziewska A; Wyrwicz LS; Ostrowski J
    Cell Mol Biol Lett; 2005; 10(2):227-35. PubMed ID: 16010288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissecting FMR1, the protein responsible for fragile X syndrome, in its structural and functional domains.
    Adinolfi S; Bagni C; Musco G; Gibson T; Mazzarella L; Pastore A
    RNA; 1999 Sep; 5(9):1248-58. PubMed ID: 10496225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of domain correlations in yeast protein complexes.
    Betel D; Isserlin R; Hogue CW
    Bioinformatics; 2004 Aug; 20 Suppl 1():i55-62. PubMed ID: 15262781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional structure and stability of the KH domain: molecular insights into the fragile X syndrome.
    Musco G; Stier G; Joseph C; Castiglione Morelli MA; Nilges M; Gibson TJ; Pastore A
    Cell; 1996 Apr; 85(2):237-45. PubMed ID: 8612276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specificity and determinants of Sam68 RNA binding. Implications for the biological function of K homology domains.
    Lin Q; Taylor SJ; Shalloway D
    J Biol Chem; 1997 Oct; 272(43):27274-80. PubMed ID: 9341174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional overlap between conserved and diverged KH domains in Saccharomyces cerevisiae SCP160.
    Brykailo MA; Corbett AH; Fridovich-Keil JL
    Nucleic Acids Res; 2007; 35(4):1108-18. PubMed ID: 17264125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel RNA-binding motif: the KH module.
    Adinolfi S; Bagni C; Castiglione Morelli MA; Fraternali F; Musco G; Pastore A
    Biopolymers; 1999; 51(2):153-64. PubMed ID: 10397799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome.
    Lewis HA; Musunuru K; Jensen KB; Edo C; Chen H; Darnell RB; Burley SK
    Cell; 2000 Feb; 100(3):323-32. PubMed ID: 10676814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Both KH and non-KH domain sequences are required for polyribosome association of Scp160p in yeast.
    Li AM; Vargas CA; Brykailo MA; Openo KK; Corbett AH; Fridovich-Keil JL
    Nucleic Acids Res; 2004; 32(16):4768-75. PubMed ID: 15356294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning of a gene highly overexpressed in cancer coding for a novel KH-domain containing protein.
    Müeller-Pillasch F; Lacher U; Wallrapp C; Micha A; Zimmerhackl F; Hameister H; Varga G; Friess H; Büchler M; Beger HG; Vila MR; Adler G; Gress TM
    Oncogene; 1997 Jun; 14(22):2729-33. PubMed ID: 9178771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Folding Mechanism and Aggregation Propensity of the KH0 Domain of FMRP and Its R138Q Pathological Variant.
    Santorelli D; Troilo F; Fata F; Angelucci F; Demitri N; Giardina G; Federici L; Catalano F; Di Matteo A; Travaglini-Allocatelli C
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ancestral KH peptide at the root of a domain family with three different folds.
    Pereira J; Lupas AN
    Bioinformatics; 2018 Dec; 34(23):3961-3965. PubMed ID: 29912332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. KH-RNA interactions: back in the groove.
    Nicastro G; Taylor IA; Ramos A
    Curr Opin Struct Biol; 2015 Feb; 30():63-70. PubMed ID: 25625331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring protein interiors: the role of a buried histidine in the KH module fold.
    Fraternali F; Amodeo P; Musco G; Nilges M; Pastore A
    Proteins; 1999 Mar; 34(4):484-96. PubMed ID: 10081961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A jack of all trades: the RNA-binding protein vigilin.
    Cheng MH; Jansen RP
    Wiley Interdiscip Rev RNA; 2017 Nov; 8(6):. PubMed ID: 28975734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The molecular basis of fragile X syndrome.
    Eberhart DE; Warren ST
    Cold Spring Harb Symp Quant Biol; 1996; 61():679-87. PubMed ID: 9246494
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.