BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 10331657)

  • 1. Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process.
    DiRusso CC; Black PN
    Mol Cell Biochem; 1999 Feb; 192(1-2):41-52. PubMed ID: 10331657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification.
    Black PN; DiRusso CC
    Microbiol Mol Biol Rev; 2003 Sep; 67(3):454-72, table of contents. PubMed ID: 12966144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex.
    Zou Z; Tong F; Faergeman NJ; Børsting C; Black PN; DiRusso CC
    J Biol Chem; 2003 May; 278(18):16414-22. PubMed ID: 12601005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Murine FATP alleviates growth and biochemical deficiencies of yeast fat1Delta strains.
    Dirusso CC; Connell EJ; Faergeman NJ; Knudsen J; Hansen JK; Black PN
    Eur J Biochem; 2000 Jul; 267(14):4422-33. PubMed ID: 10880966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid transport in Saccharomyces cerevisiae. Directed mutagenesis of FAT1 distinguishes the biochemical activities associated with Fat1p.
    Zou Z; DiRusso CC; Ctrnacta V; Black PN
    J Biol Chem; 2002 Aug; 277(34):31062-71. PubMed ID: 12052836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular Utilization.
    Faergeman NJ; Black PN; Zhao XD; Knudsen J; DiRusso CC
    J Biol Chem; 2001 Oct; 276(40):37051-9. PubMed ID: 11477098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics underlying the process of long-chain fatty acid transport.
    Azizan A; Sherin D; DiRusso CC; Black PN
    Arch Biochem Biophys; 1999 May; 365(2):299-306. PubMed ID: 10328825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Escherichia coli strains containing fad mutations plus a triple plasmid expression system to study the import of myristate, its activation by Saccharomyces cerevisiae acyl-CoA synthetase, and its utilization by S. cerevisiae myristoyl-CoA:protein N-myristoyltransferase.
    Knoll LJ; Gordon JI
    J Biol Chem; 1993 Feb; 268(6):4281-90. PubMed ID: 8440712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative biochemical studies of the murine fatty acid transport proteins (FATP) expressed in yeast.
    DiRusso CC; Li H; Darwis D; Watkins PA; Berger J; Black PN
    J Biol Chem; 2005 Apr; 280(17):16829-37. PubMed ID: 15699031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the reactivity of tetradecenoic acids, a triacsin, and unsaturated oximes with four purified Saccharomyces cerevisiae fatty acid activation proteins.
    Knoll LJ; Schall OF; Suzuki I; Gokel GW; Gordon JI
    J Biol Chem; 1995 Aug; 270(34):20090-7. PubMed ID: 7650027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals.
    Black PN; Faergeman NJ; DiRusso CC
    J Nutr; 2000 Feb; 130(2S Suppl):305S-309S. PubMed ID: 10721893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation.
    Black PN; DiRusso CC
    Biochim Biophys Acta; 2007 Mar; 1771(3):286-98. PubMed ID: 16798075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of FadL-specific fatty acid binding in Escherichia coli.
    Black PN
    Biochim Biophys Acta; 1990 Aug; 1046(1):97-105. PubMed ID: 2204431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topology of the yeast fatty acid transport protein Fat1p: mechanistic implications for functional domains on the cytosolic surface of the plasma membrane.
    Obermeyer T; Fraisl P; DiRusso CC; Black PN
    J Lipid Res; 2007 Nov; 48(11):2354-64. PubMed ID: 17679730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies of the long chain acyl-CoA synthetase Faa1p from Saccharomyces cerevisiae.
    Li H; Melton EM; Quackenbush S; DiRusso CC; Black PN
    Biochim Biophys Acta; 2007 Sep; 1771(9):1246-53. PubMed ID: 17604220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of long-chain fatty acids in Escherichia coli. Evidence for role of fadL gene product as long-chain fatty acid receptor.
    Nunn WD; Colburn RW; Black PN
    J Biol Chem; 1986 Jan; 261(1):167-71. PubMed ID: 3001045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of long-chain fatty acids by Escherichia coli: mapping and characterization of mutants in the fadL gene.
    Nunn WD; Simons RW
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3377-81. PubMed ID: 356053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid transport by vectorial acylation in mammals: roles played by different isoforms of rat long-chain acyl-CoA synthetases.
    Tong F; Black PN; Coleman RA; DiRusso CC
    Arch Biochem Biophys; 2006 Mar; 447(1):46-52. PubMed ID: 16466685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutants of Saccharomyces cerevisiae deficient in acyl-CoA synthetases secrete fatty acids due to interrupted fatty acid recycling.
    Scharnewski M; Pongdontri P; Mora G; Hoppert M; Fulda M
    FEBS J; 2008 Jun; 275(11):2765-78. PubMed ID: 18422644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity labeling fatty acyl-CoA synthetase with 9-p-azidophenoxy nonanoic acid and the identification of the fatty acid-binding site.
    Black PN; DiRusso CC; Sherin D; MacColl R; Knudsen J; Weimar JD
    J Biol Chem; 2000 Dec; 275(49):38547-53. PubMed ID: 10995760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.