BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 10331871)

  • 1. Structural basis of autoregulation of phenylalanine hydroxylase.
    Kobe B; Jennings IG; House CM; Michell BJ; Goodwill KE; Santarsiero BD; Stevens RC; Cotton RG; Kemp BE
    Nat Struct Biol; 1999 May; 6(5):442-8. PubMed ID: 10331871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation and crystallization of phosphorylated and dephosphorylated forms of truncated dimeric phenylalanine hydroxylase.
    Kobe B; Jennings IG; House CM; Feil SC; Michell BJ; Tiganis T; Parker MW; Cotton RG; Kemp BE
    Protein Sci; 1997 Jun; 6(6):1352-7. PubMed ID: 9194198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural interpretation of mutations in phenylalanine hydroxylase protein aids in identifying genotype-phenotype correlations in phenylketonuria.
    Jennings IG; Cotton RG; Kobe B
    Eur J Hum Genet; 2000 Sep; 8(9):683-96. PubMed ID: 10980574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of chimeric pterin-dependent hydroxylases: contributions of the regulatory domains of tyrosine and phenylalanine hydroxylase to substrate specificity.
    Daubner SC; Hillas PJ; Fitzpatrick PF
    Biochemistry; 1997 Sep; 36(39):11574-82. PubMed ID: 9305947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of substrate orienting and phosphorylation sites within tryptophan hydroxylase using homology-based molecular modeling.
    Jiang GC; Yohrling GJ; Schmitt JD; Vrana KE
    J Mol Biol; 2000 Sep; 302(4):1005-17. PubMed ID: 10993738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural basis of phenylketonuria.
    Erlandsen H; Stevens RC
    Mol Genet Metab; 1999 Oct; 68(2):103-25. PubMed ID: 10527663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies on phenylalanine hydroxylase and implications toward understanding and treating phenylketonuria.
    Erlandsen H; Patch MG; Gamez A; Straub M; Stevens RC
    Pediatrics; 2003 Dec; 112(6 Pt 2):1557-65. PubMed ID: 14654665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic and kinetic studies of PKU-inducing mutants of phenylalanine hydroxylase: Arg158Gln and Glu280Lys.
    Kemsley JN; Wasinger EC; Datta S; Mitić N; Acharya T; Hedman B; Caradonna JP; Hodgson KO; Solomon EI
    J Am Chem Soc; 2003 May; 125(19):5677-86. PubMed ID: 12733906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant human phenylalanine hydroxylase: novel regulatory and structural properties.
    Kowlessur D; Citron BA; Kaufman S
    Arch Biochem Biophys; 1996 Sep; 333(1):85-95. PubMed ID: 8806757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High resolution crystal structures of the catalytic domain of human phenylalanine hydroxylase in its catalytically active Fe(II) form and binary complex with tetrahydrobiopterin.
    Andersen OA; Flatmark T; Hough E
    J Mol Biol; 2001 Nov; 314(2):279-91. PubMed ID: 11718561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superstoichiometric binding of L-Phe to phenylalanine hydroxylase from Caenorhabditis elegans: evolutionary implications.
    Flydal MI; Mohn TC; Pey AL; Siltberg-Liberles J; Teigen K; Martinez A
    Amino Acids; 2010 Nov; 39(5):1463-75. PubMed ID: 20480196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro expression of 34 naturally occurring mutant variants of phenylalanine hydroxylase: correlation with metabolic phenotypes and susceptibility toward protein aggregation.
    Gjetting T; Petersen M; Guldberg P; Güttler F
    Mol Genet Metab; 2001 Feb; 72(2):132-43. PubMed ID: 11161839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural comparison of bacterial and human iron-dependent phenylalanine hydroxylases: similar fold, different stability and reaction rates.
    Erlandsen H; Kim JY; Patch MG; Han A; Volner A; Abu-Omar MM; Stevens RC
    J Mol Biol; 2002 Jul; 320(3):645-61. PubMed ID: 12096915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric mechanisms in ACT domain containing enzymes involved in amino acid metabolism.
    Liberles JS; Thórólfsson M; Martínez A
    Amino Acids; 2005 Feb; 28(1):1-12. PubMed ID: 15662561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization of the N-terminal autoregulatory sequence of phenylalanine hydroxylase.
    Horne J; Jennings IG; Teh T; Gooley PR; Kobe B
    Protein Sci; 2002 Aug; 11(8):2041-7. PubMed ID: 12142458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How the regulatory and catalytic domains get together.
    Vrana KE
    Nat Struct Biol; 1999 May; 6(5):401-2. PubMed ID: 10331859
    [No Abstract]   [Full Text] [Related]  

  • 17. Crystal structure of the catalytic domain of human phenylalanine hydroxylase reveals the structural basis for phenylketonuria.
    Erlandsen H; Fusetti F; Martinez A; Hough E; Flatmark T; Stevens RC
    Nat Struct Biol; 1997 Dec; 4(12):995-1000. PubMed ID: 9406548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential role of the N-terminal autoregulatory sequence in the regulation of phenylalanine hydroxylase.
    Jennings IG; Teh T; Kobe B
    FEBS Lett; 2001 Jan; 488(3):196-200. PubMed ID: 11163771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of tyrosine hydroxylase with bound cofactor analogue and iron at 2.3 A resolution: self-hydroxylation of Phe300 and the pterin-binding site.
    Goodwill KE; Sabatier C; Stevens RC
    Biochemistry; 1998 Sep; 37(39):13437-45. PubMed ID: 9753429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural basis of the recognition of phenylalanine and pterin cofactors by phenylalanine hydroxylase: implications for the catalytic mechanism.
    Teigen K; Frøystein NA; Martínez A
    J Mol Biol; 1999 Dec; 294(3):807-23. PubMed ID: 10610798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.