These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10332627)

  • 1. Plantar soft tissue thickness during ground contact in walking.
    Cavanagh PR
    J Biomech; 1999 Jun; 32(6):623-8. PubMed ID: 10332627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional predictors of regional peak pressures under the foot during walking.
    Morag E; Cavanagh PR
    J Biomech; 1999 Apr; 32(4):359-70. PubMed ID: 10213026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship of static foot structure to dynamic foot function.
    Cavanagh PR; Morag E; Boulton AJ; Young MJ; Deffner KT; Pammer SE
    J Biomech; 1997 Mar; 30(3):243-50. PubMed ID: 9119823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The in vivo plantar soft tissue mechanical property under the metatarsal head: implications of tissues׳ joint-angle dependent response in foot finite element modeling.
    Chen WM; Lee SJ; Lee PVS
    J Mech Behav Biomed Mater; 2014 Dec; 40():264-274. PubMed ID: 25255421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long distance running increases plantar pressures beneath the metatarsal heads: a barefoot walking investigation of 200 marathon runners.
    Nagel A; Fernholz F; Kibele C; Rosenbaum D
    Gait Posture; 2008 Jan; 27(1):152-5. PubMed ID: 17276688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimum indentation depth for characterization of 2nd sub-metatarsal head and heel pad tissue properties.
    Chin Teoh J; Bena Lim Y; Lee T
    J Biomech; 2015 Jul; 48(10):2096-101. PubMed ID: 25890816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional finite element analysis of the foot during standing--a material sensitivity study.
    Cheung JT; Zhang M; Leung AK; Fan YB
    J Biomech; 2005 May; 38(5):1045-54. PubMed ID: 15797586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional anatomy and imaging of the foot.
    Ridola C; Palma A
    Ital J Anat Embryol; 2001; 106(2):85-98. PubMed ID: 11504250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An innovative ultrasound foot scanner system for measuring the change in biomechanical properties of plantar tissue from sitting to standing.
    Ng TK; Zheng YP; Kwan RL; Cheing GL
    Int J Rehabil Res; 2015 Mar; 38(1):68-73. PubMed ID: 25426574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force-deformation properties of the human heel pad during barefoot walking.
    Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A
    Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles.
    Turcato AM; Godi M; Giordano A; Schieppati M; Nardone A
    J Neuroeng Rehabil; 2015 Jan; 12(1):4. PubMed ID: 25576354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise - A 3D finite element analysis.
    Chen WM; Park J; Park SB; Shim VP; Lee T
    J Biomech; 2012 Jun; 45(10):1783-9. PubMed ID: 22578743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patellar tendon bearing brace: combined effect of heel clearance and ankle status on foot plantar pressure.
    Alimerzaloo F; Kashani RV; Saeedi H; Farzi M; Fallahian N
    Prosthet Orthot Int; 2014 Feb; 38(1):34-8. PubMed ID: 23690286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-shoe plantar pressures during activities of daily living: implications for therapeutic footwear design.
    Rozema A; Ulbrecht JS; Pammer SE; Cavanagh PR
    Foot Ankle Int; 1996 Jun; 17(6):352-9. PubMed ID: 8791084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonographic measurement of the mechanical properties of the sole under the metatarsal heads.
    Wang CL; Hsu TC; Shau YW; Shieh JY; Hsu KH
    J Orthop Res; 1999 Sep; 17(5):709-13. PubMed ID: 10569480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time subject-specific monitoring of internal deformations and stresses in the soft tissues of the foot: a new approach in gait analysis.
    Yarnitzky G; Yizhar Z; Gefen A
    J Biomech; 2006; 39(14):2673-89. PubMed ID: 16212969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo biomechanical behavior of the human heel pad during the stance phase of gait.
    Gefen A; Megido-Ravid M; Itzchak Y
    J Biomech; 2001 Dec; 34(12):1661-5. PubMed ID: 11716870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation.
    Seo JW; Kang DW; Kim JY; Yang ST; Kim DH; Choi JS; Tack GR
    Biomed Mater Eng; 2014; 24(6):2485-93. PubMed ID: 25226949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of extrinsic plantar flexors on forefoot loading during heel rise.
    Ferris L; Sharkey NA; Smith TS; Matthews DK
    Foot Ankle Int; 1995 Aug; 16(8):464-73. PubMed ID: 8520658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.