BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10332875)

  • 1. Fitting cytosolic ADP recovery after exercise with a step response function.
    Chen JT; Argov Z; Kearney RE; Arnold DL
    Magn Reson Med; 1999 May; 41(5):926-32. PubMed ID: 10332875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ADP recovery after a brief ischemic exercise in normal and diseased human muscle--a 31P MRS study.
    Argov Z; De Stefano N; Arnold DL
    NMR Biomed; 1996 Jun; 9(4):165-72. PubMed ID: 9015803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of cytosolic pH on in vivo assessment of human muscle mitochondrial respiration by phosphorus magnetic resonance spectroscopy.
    Lodi R; Kemp GJ; Iotti S; Radda GK; Barbiroli B
    MAGMA; 1997 Jun; 5(2):165-71. PubMed ID: 9268081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle.
    Kemp GJ; Taylor DJ; Radda GK
    NMR Biomed; 1993; 6(1):66-72. PubMed ID: 8457428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved brain and muscle mitochondrial respiration with CoQ. An in vivo study by 31P-MR spectroscopy in patients with mitochondrial cytopathies.
    Barbiroli B; Iotti S; Lodi R
    Biofactors; 1999; 9(2-4):253-60. PubMed ID: 10416038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal in vivo skeletal muscle oxidative metabolism in sporadic inclusion body myositis assessed by 31P-magnetic resonance spectroscopy.
    Lodi R; Taylor DJ; Tabrizi SJ; Hilton-Jones D; Squier MV; Seller A; Styles P; Schapira AH
    Brain; 1998 Nov; 121 ( Pt 11)():2119-26. PubMed ID: 9827771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise.
    Kemp GJ; Taylor DJ; Thompson CH; Hands LJ; Rajagopalan B; Styles P; Radda GK
    NMR Biomed; 1993; 6(5):302-10. PubMed ID: 8268062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairment of muscle mitochondrial oxidative metabolism in McArdles's disease.
    De Stefano N; Argov Z; Matthews PM; Karpati G; Arnold DL
    Muscle Nerve; 1996 Jun; 19(6):764-9. PubMed ID: 8609928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supplemental oxygen and muscle metabolism in mitochondrial myopathy patients.
    Trenell MI; Sue CM; Thompson CH; Kemp GJ
    Eur J Appl Physiol; 2007 Mar; 99(5):541-7. PubMed ID: 17219172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Value of dynamic ³¹P magnetic resonance spectroscopy technique in in vivo assessment of the skeletal muscle mitochondrial function in type 2 diabetes.
    Wu FY; Tu HJ; Qin B; Chen T; Xu HF; Qi J; Wang DH
    Chin Med J (Engl); 2012 Jan; 125(2):281-6. PubMed ID: 22340560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uraemic muscle metabolism at rest and during exercise.
    Thompson CH; Kemp GJ; Barnes PR; Rajagopalan B; Styles P; Taylor DJ; Radda GK
    Nephrol Dial Transplant; 1994; 9(11):1600-5. PubMed ID: 7870350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The signal transduction function for oxidative phosphorylation is at least second order in ADP.
    Jeneson JA; Wiseman RW; Westerhoff HV; Kushmerick MJ
    J Biol Chem; 1996 Nov; 271(45):27995-8. PubMed ID: 8910406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.
    Pipinos II; Shepard AD; Anagnostopoulos PV; Katsamouris A; Boska MD
    J Vasc Surg; 2000 May; 31(5):944-52. PubMed ID: 10805885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of measuring energy metabolism by different (31) P-magnetic resonance spectroscopy techniques in resting, ischemic, and exercising muscle.
    Schmid AI; Schrauwen-Hinderling VB; Andreas M; Wolzt M; Moser E; Roden M
    Magn Reson Med; 2012 Apr; 67(4):898-905. PubMed ID: 21842500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic phosphate is transported into mitochondria in the absence of ATP biosynthesis: an in vivo 31P NMR study in the human skeletal muscle.
    Iotti S; Lodi R; Gottardi G; Zaniol P; Barbiroli B
    Biochem Biophys Res Commun; 1996 Aug; 225(1):191-4. PubMed ID: 8769116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function.
    Layec G; Gifford JR; Trinity JD; Hart CR; Garten RS; Park SY; Le Fur Y; Jeong EK; Richardson RS
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E358-66. PubMed ID: 27302751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive assessment of oxidative capacity in young Indian men and women: a 31P magnetic resonance spectroscopy study.
    Rana P; Varshney A; Devi MM; Kumar P; Khushu S
    Indian J Biochem Biophys; 2008 Aug; 45(4):263-8. PubMed ID: 18788477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative capacity and ageing in human muscle.
    Conley KE; Jubrias SA; Esselman PC
    J Physiol; 2000 Jul; 526 Pt 1(Pt 1):203-10. PubMed ID: 10878112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of a metabolic reserve in the skeletal muscle of elderly people.
    Layec G; Trinity JD; Hart CR; Le Fur Y; Sorensen JR; Jeong EK; Richardson RS
    Aging (Albany NY); 2016 Nov; 9(1):52-67. PubMed ID: 27824313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioenergetics of skeletal muscle in mitochondrial myopathy.
    Taylor DJ; Kemp GJ; Radda GK
    J Neurol Sci; 1994 Dec; 127(2):198-206. PubMed ID: 7707079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.