These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10332878)

  • 1. In vivo micro-imaging using alternating navigator echoes with applications to cancellous bone structural analysis.
    Song HK; Wehrli FW
    Magn Reson Med; 1999 May; 41(5):947-53. PubMed ID: 10332878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing.
    Wehrli FW; Hwang SN; Ma J; Song HK; Ford JC; Haddad JG
    Radiology; 1998 Feb; 206(2):347-57. PubMed ID: 9457185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion reduction for quantitative brain sodium MR imaging with a navigated flexible twisted projection imaging sequence at 9.4 T.
    Lu A; Atkinson IC; Thulborn KR
    J Magn Reson; 2019 Oct; 307():106582. PubMed ID: 31499470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing motion artefacts in diffusion-weighted MRI of the brain: efficacy of navigator echo correction and pulse triggering.
    Dietrich O; Heiland S; Benner T; Sartor K
    Neuroradiology; 2000 Feb; 42(2):85-91. PubMed ID: 10663480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Registration-based autofocusing technique for automatic correction of motion artifacts in time-series studies of high-resolution bone MRI.
    Zhang N; Magland JF; Song HK; Wehrli FW
    J Magn Reson Imaging; 2015 Apr; 41(4):954-63. PubMed ID: 24803089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion artifacts reduction in DWI using navigator echoes: a robust and simple correction scheme.
    Latta P; Jellús V; Budinský L; Mlynárik V; Tkác I; Luypaert R
    MAGMA; 1998 Nov; 7(1):21-7. PubMed ID: 9877456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trabecular bone structure analysis in the limited spatial resolution regime of in vivo MRI.
    Magland JF; Wehrli FW
    Acad Radiol; 2008 Dec; 15(12):1482-93. PubMed ID: 19000865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging.
    Majumdar S; Newitt D; Jergas M; Gies A; Chiu E; Osman D; Keltner J; Keyak J; Genant H
    Bone; 1995 Oct; 17(4):417-30. PubMed ID: 8573417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subvoxel processing: a method for reducing partial volume blurring with application to in vivo MR images of trabecular bone.
    Hwang SN; Wehrli FW
    Magn Reson Med; 2002 May; 47(5):948-57. PubMed ID: 11979574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization and analysis of trabecular bone architecture in the limited spatial resolution regime of in vivo micro-MRI.
    Wehrli FW; Hwang SN; Song HK; Gomberg BR
    Adv Exp Med Biol; 2001; 496():153-64. PubMed ID: 11783617
    [No Abstract]   [Full Text] [Related]  

  • 11. Image metric-based correction (autofocusing) of motion artifacts in high-resolution trabecular bone imaging.
    Lin W; Ladinsky GA; Wehrli FW; Song HK
    J Magn Reson Imaging; 2007 Jul; 26(1):191-7. PubMed ID: 17659555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective motion correction in 2D multishot MRI using EPI navigators and multislice-to-volume image registration.
    Hoinkiss DC; Porter DA
    Magn Reson Med; 2017 Dec; 78(6):2127-2135. PubMed ID: 28983957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of translational motion artifacts in multi-slice spin-echo imaging using self-calibration.
    Zang LH; Fielden J; Wilbrink J; Takane A; Koizumi H
    Magn Reson Med; 1993 Mar; 29(3):327-34. PubMed ID: 8450741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of respiratory navigator-gated three-dimensional spoiled gradient-recalled echo sequence with variable flip angle scheme.
    Iwadate Y; Brau AC; Vasanawala SS; Kabasawa H
    Magn Reson Med; 2014 Jul; 72(1):172-7. PubMed ID: 23904390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully balanced steady-state 3D-spin-echo (bSSSE) imaging at 3 Tesla.
    Krug R; Han ET; Banerjee S; Majumdar S
    Magn Reson Med; 2006 Nov; 56(5):1033-40. PubMed ID: 16986110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast low-angle dual spin-echo (FLADE): a new robust pulse sequence for structural imaging of trabecular bone.
    Magland J; Vasilic B; Wehrli FW
    Magn Reson Med; 2006 Mar; 55(3):465-71. PubMed ID: 16463354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New architectural parameters derived from micro-MRI for the prediction of trabecular bone strength.
    Wehrli FW; Hwang SN; Song HK
    Technol Health Care; 1998 Dec; 6(5-6):307-20. PubMed ID: 10100934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion correction using an enhanced floating navigator and GRAPPA operations.
    Lin W; Huang F; Börnert P; Li Y; Reykowski A
    Magn Reson Med; 2010 Feb; 63(2):339-48. PubMed ID: 19918907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of signal fluctuation in functional MRI using navigator echoes.
    Hu X; Kim SG
    Magn Reson Med; 1994 May; 31(5):495-503. PubMed ID: 8015402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Micro MRI of trabecular bone].
    Takahashi M; Wehrli FW
    Clin Calcium; 2004 Dec; 14(12):47-54. PubMed ID: 15577173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.