BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 10333172)

  • 1. QM/MM study of the active site of free papain and of the NMA-papain complex.
    Han WG; Tajkhorshid E; Suhai S
    J Biomol Struct Dyn; 1999 Apr; 16(5):1019-32. PubMed ID: 10333172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of papain inhibition by peptidyl aldehydes.
    Shokhen M; Khazanov N; Albeck A
    Proteins; 2011 Mar; 79(3):975-85. PubMed ID: 21181719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the archetype cysteine protease reaction using dispersion corrected density functional methods in ONIOM-type hybrid QM/MM calculations; the proteolytic reaction of papain.
    Fekete A; Komáromi I
    Phys Chem Chem Phys; 2016 Dec; 18(48):32847-32861. PubMed ID: 27883128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QM/MM and SCRF studies of the ionization state of 8-methylpterin substrate bound to dihydrofolate reductase: existence of a low-barrier hydrogen bond.
    Cummins PL; Gready JE
    J Mol Graph Model; 2000 Feb; 18(1):42-9. PubMed ID: 10935206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin.
    Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD
    J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide hydrolysis catalyzed by matrix metalloproteinase 2: a computational study.
    Díaz N; Suárez D
    J Phys Chem B; 2008 Jul; 112(28):8412-24. PubMed ID: 18570467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase.
    Cummins PL; Gready JE
    J Am Chem Soc; 2001 Apr; 123(15):3418-28. PubMed ID: 11472112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations.
    Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W
    J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the origin of the stabilization of the zwitterionic resting state of cysteine proteases: a theoretical study.
    Mladenovic M; Fink RF; Thiel W; Schirmeister T; Engels B
    J Am Chem Soc; 2008 Jul; 130(27):8696-705. PubMed ID: 18557615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio QM/MM modelling of acetyl-CoA deprotonation in the enzyme citrate synthase.
    van der Kamp MW; Perruccio F; Mulholland AJ
    J Mol Graph Model; 2007 Oct; 26(3):676-90. PubMed ID: 17493853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases.
    Beveridge AJ
    Protein Sci; 1996 Jul; 5(7):1355-65. PubMed ID: 8819168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio and QM/MM study of electron addition on the disulfide bond in thioredoxin.
    Rickard GA; Bergès J; Houèe-Levin C; Rauk A
    J Phys Chem B; 2008 May; 112(18):5774-87. PubMed ID: 18447348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction.
    Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ
    Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling of substrate-enzyme reactions for the cysteine protease papain.
    Lin Y; Welsh WJ
    J Mol Graph; 1996 Apr; 14(2):62-72, 92-3. PubMed ID: 8835773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site cysteine is protonated in the PAD4 Michaelis complex: evidence from Born-Oppenheimer ab initio QM/MM molecular dynamics simulations.
    Ke Z; Zhou Y; Hu P; Wang S; Xie D; Zhang Y
    J Phys Chem B; 2009 Sep; 113(38):12750-8. PubMed ID: 19507815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational studies of nucleophilic substitution at carbonyl carbon: the S(N)2 mechanism versus the tetrahedral intermediate in organic synthesis.
    Fox JM; Dmitrenko O; Liao LA; Bach RD
    J Org Chem; 2004 Oct; 69(21):7317-28. PubMed ID: 15471486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.