BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 10333487)

  • 21. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity.
    Lee SR; Bar-Noy S; Kwon J; Levine RL; Stadtman TC; Rhee SG
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2521-6. PubMed ID: 10688911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Roles of N-terminal active cysteines and C-terminal cysteine-selenocysteine in the catalytic mechanism of mammalian thioredoxin reductase.
    Fujiwara N; Fujii T; Fujii J; Taniguchi N
    J Biochem; 2001 May; 129(5):803-12. PubMed ID: 11328605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Caenorhabditis elegans homologue of thioredoxin reductase contains a selenocysteine insertion sequence (SECIS) element that differs from mammalian SECIS elements but directs selenocysteine incorporation.
    Buettner C; Harney JW; Berry MJ
    J Biol Chem; 1999 Jul; 274(31):21598-602. PubMed ID: 10419466
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning and characterization of two glutathione peroxidase cDNAs from southern bluefin tuna (Thunnus maccoyii).
    Thompson JL; See VH; Thomas PM; Schuller KA
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Aug; 156(4):287-97. PubMed ID: 20416392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential regulation of expression of cytosolic and mitochondrial thioredoxin reductase in rat liver and kidney.
    Crosley LK; Méplan C; Nicol F; Rundlöf AK; Arnér ES; Hesketh JE; Arthur JR
    Arch Biochem Biophys; 2007 Mar; 459(2):178-88. PubMed ID: 17291446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antioxidant function of thioredoxin and glutaredoxin systems.
    Holmgren A
    Antioxid Redox Signal; 2000; 2(4):811-20. PubMed ID: 11213485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for a functional relevance of the selenocysteine residue in mammalian thioredoxin reductase.
    Marcocci L; Flohé L; Packer L
    Biofactors; 1997; 6(3):351-8. PubMed ID: 9288405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An essential non-Watson-Crick base pair motif in 3'UTR to mediate selenoprotein translation.
    Walczak R; Carbon P; Krol A
    RNA; 1998 Jan; 4(1):74-84. PubMed ID: 9436910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Induction of apoptosis by the overexpression of an alternative splicing variant of mitochondrial thioredoxin reductase.
    Chang EY; Son SK; Ko HS; Baek SH; Kim JH; Kim JR
    Free Radic Biol Med; 2005 Dec; 39(12):1666-75. PubMed ID: 16298692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of a selenoprotein, thioredoxin reductase, in a unicellular marine haptophyte alga, Emiliania huxleyi.
    Araie H; Suzuki I; Shiraiwa Y
    J Biol Chem; 2008 Dec; 283(51):35329-36. PubMed ID: 18945673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overexpression of wild type and SeCys/Cys mutant of human thioredoxin reductase in E. coli: the role of selenocysteine in the catalytic activity.
    Bar-Noy S; Gorlatov SN; Stadtman TC
    Free Radic Biol Med; 2001 Jan; 30(1):51-61. PubMed ID: 11134895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. No selenium required: reactions catalyzed by mammalian thioredoxin reductase that are independent of a selenocysteine residue.
    Lothrop AP; Ruggles EL; Hondal RJ
    Biochemistry; 2009 Jul; 48(26):6213-23. PubMed ID: 19366212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An ascidian homolog of vertebrate iodothyronine deiodinases.
    Shepherdley CA; Klootwijk W; Makabe KW; Visser TJ; Kuiper GG
    Endocrinology; 2004 Mar; 145(3):1255-68. PubMed ID: 14657009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A pseudo-SECIS element in Methanococcus voltae documents evolution of a selenoprotein into a sulphur-containing homologue.
    Böck A; Rother M
    Arch Microbiol; 2005 Feb; 183(2):148-50. PubMed ID: 15611862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and cloning of a selenium dependent glutathione peroxidase from giant freshwater prawn, Macrobrachium rosenbergii.
    Yeh SP; Liu KF; Chiu ST; Jian SJ; Cheng W; Liu CH
    Fish Shellfish Immunol; 2009 Aug; 27(2):181-91. PubMed ID: 19376233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of selenocysteine-containing glutathione S-transferase in Escherichia coli.
    Jiang Z; Arnér ES; Mu Y; Johansson L; Shi J; Zhao S; Liu S; Wang R; Zhang T; Yan G; Liu J; Shen J; Luo G
    Biochem Biophys Res Commun; 2004 Aug; 321(1):94-101. PubMed ID: 15358220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternative splicing involving the thioredoxin reductase module in mammals: a glutaredoxin-containing thioredoxin reductase 1.
    Su D; Gladyshev VN
    Biochemistry; 2004 Sep; 43(38):12177-88. PubMed ID: 15379556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nematode selenoproteome: the use of the selenocysteine insertion system to decode one codon in an animal genome?
    Taskov K; Chapple C; Kryukov GV; Castellano S; Lobanov AV; Korotkov KV; Guigó R; Gladyshev VN
    Nucleic Acids Res; 2005; 33(7):2227-38. PubMed ID: 15843685
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloning of a 5.8 kb cDNA for a mouse type 2 deiodinase.
    Davey JC; Schneider MJ; Becker KB; Galton VA
    Endocrinology; 1999 Feb; 140(2):1022-5. PubMed ID: 9927339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mutual sparing effects of selenium and vitamin E in animal nutrition may be further explained by the discovery that mammalian thioredoxin reductase is a selenoenzyme.
    Tamura T; Gladyshev V; Liu SY; Stadtman TC
    Biofactors; 1995-1996; 5(2):99-102. PubMed ID: 8722124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.