These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10333509)

  • 21. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths.
    Vickers NJ; Baker TC
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5756-60. PubMed ID: 11607476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes.
    Turner SL; Li N; Guda T; Githure J; Cardé RT; Ray A
    Nature; 2011 Jun; 474(7349):87-91. PubMed ID: 21637258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emergent behaviour and neural dynamics in artificial agents tracking odour plumes.
    Singh SH; van Breugel F; Rao RPN; Brunton BW
    Nat Mach Intell; 2023 Jan; 5(1):58-70. PubMed ID: 37886259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. History dependence in insect flight decisions during odor tracking.
    Pang R; van Breugel F; Dickinson M; Riffell JA; Fairhall A
    PLoS Comput Biol; 2018 Feb; 14(2):e1005969. PubMed ID: 29432454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Odor-modulated upwind flight of the sphinx moth, Manduca sexta L.
    Willis MA; Arbas EA
    J Comp Physiol A; 1991 Oct; 169(4):427-40. PubMed ID: 1779417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of lactic acid on odour-related host preference of yellow fever mosquitoes.
    Steib BM; Geier M; Boeckh J
    Chem Senses; 2001 Jun; 26(5):523-8. PubMed ID: 11418498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential behaviour of Anopheles gambiae sensu stricto (Diptera: Culicidae) to human and cow odours in the laboratory.
    Pates HV; Takken W; Stuke K; Curtis CF
    Bull Entomol Res; 2001 Aug; 91(4):289-96. PubMed ID: 11587625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Odor-modulated orientation in walking male cockroaches Periplaneta americana, and the effects of odor plumes of different structure.
    Willis MA; Avondet JL
    J Exp Biol; 2005 Feb; 208(Pt 4):721-35. PubMed ID: 15695764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of vision in odor-plume tracking by walking and flying insects.
    Willis MA; Avondet JL; Zheng E
    J Exp Biol; 2011 Dec; 214(Pt 24):4121-32. PubMed ID: 22116754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of altering flow and odor information on plume tracking behavior in walking cockroaches, Periplaneta americana (L.).
    Willis MA; Avondet JL; Finnell AS
    J Exp Biol; 2008 Jul; 211(Pt 14):2317-26. PubMed ID: 18587126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A wind tunnel bioassay system for screening mosquito repellents.
    Sharpington PJ; Healy TP; Copland MJ
    J Am Mosq Control Assoc; 2000 Sep; 16(3):234-40. PubMed ID: 11081652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wind tunnel studies of sex pheromone-mediated behavior of the Hessian fly (Diptera: Cecidomyiidae).
    Harris MO; Foster SP
    J Chem Ecol; 1991 Dec; 17(12):2421-35. PubMed ID: 24258636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disruption of male spruce budworm orientation to calling females in a wind tunnel by synthetic pheromone.
    Sanders CJ
    J Chem Ecol; 1982 Feb; 8(2):493-506. PubMed ID: 24414960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variable wind directions and anemotactic strategies of searching for an odour plume.
    Sabelis MW; Schippers P
    Oecologia; 1984 Aug; 63(2):225-228. PubMed ID: 28311017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of Anopheles gambiae mosquitoes by carbon dioxide and human breath.
    Healy TP; Copland MJ
    Med Vet Entomol; 1995 Jul; 9(3):331-6. PubMed ID: 7548953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visualization of house-entry behaviour of malaria mosquitoes.
    Spitzen J; Koelewijn T; Mukabana WR; Takken W
    Malar J; 2016 Apr; 15():233. PubMed ID: 27108961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Location of and landing on a source of human body odour by female
    Lacey ES; Cardé RT
    Physiol Entomol; 2012 Jun; 37(2):153-159. PubMed ID: 26472918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial memory-based behaviors for locating sources of odor plumes.
    Grünbaum D; Willis MA
    Mov Ecol; 2015; 3(1):11. PubMed ID: 25960875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orientation of Culex mosquitoes to carbon dioxide-baited traps: flight manoeuvres and trapping efficiency.
    Cooperband MF; Cardé RT
    Med Vet Entomol; 2006 Mar; 20(1):11-26. PubMed ID: 16608486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The spiking output of the mouse olfactory bulb encodes large-scale temporal features of natural odor environments.
    Lewis SM; Suarez LM; Rigolli N; Franks KM; Steinmetz NA; Gire DH
    bioRxiv; 2024 Jul; ():. PubMed ID: 38496526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.