BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 10333568)

  • 1. Molecular identification of the active ninja retrotransposon and the inactive aurora element in Drosophila simulans and D. melanogaster.
    Kanamori Y; Hayashi H; Yamamoto MT
    Genes Genet Syst; 1998 Dec; 73(6):385-96. PubMed ID: 10333568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structure of the transposable element ninja in Drosophila simulans.
    Ogura K; Takechi S; Nakayama T; Yamamoto MT
    Genes Genet Syst; 1996 Feb; 71(1):1-8. PubMed ID: 8925473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid decrease in number of the complete ninja element and concomitant increase of the defective element in a strain of Drosophila simulans.
    Ogura K; Ohsako T; Yamamoto MT
    Genetica; 2005 May; 124(1):99-106. PubMed ID: 16011008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The analysis of Circe, an LTR retrotransposon of Drosophila melanogaster, suggests that an insertion of non-LTR retrotransposons into LTR elements can create chimeric retroelements.
    Losada A; Abad JP; Agudo M; Villasante A
    Mol Biol Evol; 1999 Oct; 16(10):1341-6. PubMed ID: 10563015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplification of the 1731 LTR retrotransposon in Drosophila melanogaster cultured cells: origin of neocopies and impact on the genome.
    Maisonhaute C; Ogereau D; Hua-Van A; Capy P
    Gene; 2007 May; 393(1-2):116-26. PubMed ID: 17382490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two novel Pao-like retrotransposons (Kamikaze and Yamato) from the silkworm species Bombyx mori and B. mandarina: common structural features of Pao-like elements.
    Abe H; Ohbayashi F; Sugasaki T; Kanehara M; Terada T; Shimada T; Kawai S; Mita K; Kanamori Y; Yamamoto MT; Oshiki T
    Mol Genet Genomics; 2001 Apr; 265(2):375-85. PubMed ID: 11361350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wake up of transposable elements following Drosophila simulans worldwide colonization.
    Vieira C; Lepetit D; Dumont S; Biémont C
    Mol Biol Evol; 1999 Sep; 16(9):1251-5. PubMed ID: 10486980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the adaptive significance of an LTR retrotransposon sequence in a Drosophila heterochromatic gene.
    McCollum AM; Ganko EW; Barrass PA; Rodriguez JM; McDonald JF
    BMC Evol Biol; 2002 Mar; 2():5. PubMed ID: 11914129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of copia sequence variation within and between Drosophila species.
    Csink AK; McDonald JF
    Mol Biol Evol; 1995 Jan; 12(1):83-93. PubMed ID: 7877499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide variation at the runt locus in Drosophila melanogaster and Drosophila simulans.
    Labate JA; Biermann CH; Eanes WF
    Mol Biol Evol; 1999 Jun; 16(6):724-31. PubMed ID: 10368951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposable element dynamics in two sibling species: Drosophila melanogaster and Drosophila simulans.
    Vieira C; Biémont C
    Genetica; 2004 Mar; 120(1-3):115-23. PubMed ID: 15088652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The gag coding region of the Drosophila telomeric retrotransposon, HeT-A, has an internal frame shift and a length polymorphic region.
    Pardue ML; Danilevskaya ON; Lowenhaupt K; Wong J; Erby K
    J Mol Evol; 1996 Dec; 43(6):572-83. PubMed ID: 8995054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient amplification of Drosophila simulans copia directed by high-level reverse transcriptase activity associated with copia virus-like particles.
    Yoshioka K; Kanda H; Takamatsu N; Togashi S; Kondo S; Miyake T; Sakaki Y; Shiba T
    Gene; 1992 Oct; 120(2):191-6. PubMed ID: 1383092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide variation in the triosephosphate isomerase (Tpi) locus of Drosophila melanogaster and Drosophila simulans.
    Hasson E; Wang IN; Zeng LW; Kreitman M; Eanes WF
    Mol Biol Evol; 1998 Jun; 15(6):756-69. PubMed ID: 9615457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside.
    Bowen NJ; McDonald JF
    Genome Res; 2001 Sep; 11(9):1527-40. PubMed ID: 11544196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms regulating the copy numbers of six LTR retrotransposons in the genome of Drosophila melanogaster.
    Carr M; Soloway JR; Robinson TE; Brookfield JF
    Chromosoma; 2002 Feb; 110(8):511-8. PubMed ID: 12068968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the LINE-like I element in the Drosophila melanogaster species subgroup.
    Sezutsu H; Nitasaka E; Yamazaki T
    Mol Gen Genet; 1995 Nov; 249(2):168-78. PubMed ID: 7500938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster.
    Bergman CM; Bensasson D
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11340-5. PubMed ID: 17592135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Microcloning and characteristics of DNA from regions of the centromeric heterochromatin of Drosophila melanogaster polytene chromosomes].
    Rutsov NB; Alekseenko AA; Beliaeva ES; Volkova EI; Kokoza EB; Makunin IV; Moshkin IuM; Shestopal SA; Zhimulev IF
    Genetika; 1999 Jan; 35(1):55-61. PubMed ID: 10330613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [MDG1het and aurora--non-mobile retrotransposons of Drosophila melanogaster].
    Nurminskiĭ DI; Shevelev IuIa
    Genetika; 1992 Aug; 28(8):36-45. PubMed ID: 1332909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.