BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 10333583)

  • 1. Characterization and biosynthesis of non-degradable polymers in plant cuticles.
    Villena JF; Domínguez E; Stewart D; Heredia A
    Planta; 1999 Apr; 208(2):181-7. PubMed ID: 10333583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf cuticle analyses: implications for the existence of cutan/non-ester cutin and its biosynthetic origin.
    Leide J; Nierop KGJ; Deininger AC; Staiger S; Riederer M; de Leeuw JW
    Ann Bot; 2020 Jun; 126(1):141-162. PubMed ID: 32222770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of plant cuticles: occurrence and role of non-ester bonds in cutin of Clivia miniata Reg. leaves.
    Schmidt HW; Schönherr J
    Planta; 1982 Dec; 156(4):380-4. PubMed ID: 24272585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of plant cuticles: fine structure and cutin composition of Clivia miniata Reg. leaves.
    Riederer M; Schönherr J
    Planta; 1988 Apr; 174(1):127-38. PubMed ID: 24221429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-state NMR characterization of pyrene-cuticular matter interactions.
    Sachleben JR; Chefetz B; Deshmukh A; Hatcher PG
    Environ Sci Technol; 2004 Aug; 38(16):4369-76. PubMed ID: 15382866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the extractable lipids and polymeric lipids in sorption of organic contaminants onto plant cuticles.
    Chen B; Li Y; Guo Y; Zhu L; Schnoor JL
    Environ Sci Technol; 2008 Mar; 42(5):1517-23. PubMed ID: 18441797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of polyhydroxy fatty acid nanoparticles related to plant lipid biopolyesters.
    Heredia-Guerrero JA; Domínguez E; Luna M; Benítez JJ; Heredia A
    Chem Phys Lipids; 2010 Mar; 163(3):329-33. PubMed ID: 20123090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation and transport of (2,4-dichlorophenoxy)acetic acid in plant cuticles: I. Sorption in the cuticular membrane and its components.
    Riederer M; Schönherr J
    Ecotoxicol Environ Saf; 1984 Jun; 8(3):236-47. PubMed ID: 6734501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine structure of plant cuticles in relation to water permeability: The fine structure of the cuticle of Clivia miniata reg. leaves.
    Mérida T; Schönherr J; Schmidt HW
    Planta; 1981 Jul; 152(3):259-67. PubMed ID: 24302425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy.
    Deshmukh AP; Simpson AJ; Hatcher PG
    Phytochemistry; 2003 Nov; 64(6):1163-70. PubMed ID: 14568084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation and transport of (2,4-dichlorophenoxy)acetic acid in plant cuticles. II. Permeability of the cuticular membrane.
    Riederer M; Schönherr J
    Ecotoxicol Environ Saf; 1985 Apr; 9(2):196-208. PubMed ID: 3987599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vivo study of cutin synthesis in leaves of Clivia miniata Reg.
    Lendzian KJ; Schönherr J
    Planta; 1983 Jun; 158(1):70-5. PubMed ID: 24264450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chemistry of plant cuticles: a study of cutin from Agave americana L.
    MATIC M
    Biochem J; 1956 May; 63(1):168-76. PubMed ID: 13353926
    [No Abstract]   [Full Text] [Related]  

  • 14. Isolation, characterization, and localization of AgaSGNH cDNA: a new SGNH-motif plant hydrolase specific to Agave americana L. leaf epidermis.
    Reina JJ; Guerrero C; Heredia A
    J Exp Bot; 2007; 58(11):2717-31. PubMed ID: 17609535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of novel oxidized cellulose acetate methyl esters.
    Yang D; Kumar V
    Carbohydr Polym; 2012 Nov; 90(4):1486-93. PubMed ID: 22944406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Batatins I and II, ester-type dimers of acylated pentasaccharides from the resin glycosides of sweet potato.
    Escalante-Sánchez E; Pereda-Miranda R
    J Nat Prod; 2007 Jun; 70(6):1029-34. PubMed ID: 17488129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes.
    Schönherr J
    J Exp Bot; 2006; 57(11):2471-91. PubMed ID: 16825315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of sorption and diffusion of lipophilic molecules in cuticular waxes and the effects of accelerators on solute mobilities.
    Schreiber L
    J Exp Bot; 2006; 57(11):2515-23. PubMed ID: 16882646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces?
    Buschhaus C; Jetter R
    J Exp Bot; 2011 Jan; 62(3):841-53. PubMed ID: 21193581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A new steroidal glycoside from fermented leaves of Agave americana].
    Jin JM; Liu XK; Yang CR
    Zhongguo Zhong Yao Za Zhi; 2002 Jun; 27(6):431-4. PubMed ID: 12774633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.