BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 10333589)

  • 1. Control of hypocotyl elongation in Arabidopsis thaliana by photoreceptor interaction.
    Hennig L; Poppe C; Unger S; Schäfer E
    Planta; 1999 Apr; 208(2):257-63. PubMed ID: 10333589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis.
    Casal JJ; Mazzella MA
    Plant Physiol; 1998 Sep; 118(1):19-25. PubMed ID: 9733522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development.
    Neff MM; Chory J
    Plant Physiol; 1998 Sep; 118(1):27-35. PubMed ID: 9733523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional interaction of cryptochrome 1 and phytochrome D.
    Hennig L; Funk M; Whitelam GC; Schafer E
    Plant J; 1999 Nov; 20(3):289-94. PubMed ID: 10571889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana.
    Su L; Hou P; Song M; Zheng X; Guo L; Xiao Y; Yan L; Li W; Yang J
    Int J Mol Sci; 2015 May; 16(6):12199-212. PubMed ID: 26030677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana.
    Cerdán PD; Yanovsky MJ; Reymundo FC; Nagatani A; Staneloni RJ; Whitelam GC; Casal JJ
    Plant J; 1999 Jun; 18(5):499-507. PubMed ID: 10417700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPA1, a component of phytochrome A signal transduction, regulates the light signaling current.
    Baumgardt RL; Oliverio KA; Casal JJ; Hoecker U
    Planta; 2002 Sep; 215(5):745-53. PubMed ID: 12244439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. shl, a New set of Arabidopsis mutants with exaggerated developmental responses to available red, far-red, and blue light.
    Pepper AE; Seong-Kim M; Hebst SM; Ivey KN; Kwak SJ; Broyles DE
    Plant Physiol; 2001 Sep; 127(1):295-304. PubMed ID: 11553757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposing roles of phytochrome A and phytochrome B in early cryptochrome-mediated growth inhibition.
    Folta KM; Spalding EP
    Plant J; 2001 Nov; 28(3):333-40. PubMed ID: 11722775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses.
    Kang X; Chong J; Ni M
    Plant Cell; 2005 Mar; 17(3):822-35. PubMed ID: 15705950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-action between phytochrome B and HY4 in Arabidopsis thaliana.
    Casal JJ; Boccalandro H
    Planta; 1995; 197(2):213-8. PubMed ID: 8547813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochrome A enhances the promotion of hypocotyl growth caused by reductions in levels of phytochrome B in its far-red-light-absorbing form in light-grown Arabidopsis thaliana.
    Casal JJ
    Plant Physiol; 1996 Nov; 112(3):965-73. PubMed ID: 8938405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light.
    Kneissl J; Shinomura T; Furuya M; Bolle C
    Mol Plant; 2008 Jan; 1(1):84-102. PubMed ID: 20031917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis.
    Yanovsky MJ; Mazzella MA; Whitelam GC; Casal JJ
    J Biol Rhythms; 2001 Dec; 16(6):523-30. PubMed ID: 11760010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis.
    Jia KP; Luo Q; He SB; Lu XD; Yang HQ
    Mol Plant; 2014 Mar; 7(3):528-40. PubMed ID: 24126495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative interference of endogenous phytochrome B with phytochrome A function in Arabidopsis.
    Hennig L; Poppe C; Sweere U; Martin A; Schäfer E
    Plant Physiol; 2001 Feb; 125(2):1036-44. PubMed ID: 11161059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The light-induced reduction of the gravitropic growth-orientation of seedlings of Arabidopsis thaliana (L.) Heynh. is a photomorphogenic response mediated synergistically by the far-red-absorbing forms of phytochromes A and B.
    Poppe C; Hangarter RP; Sharrock RA; Nagy F; Schäfer E
    Planta; 1996; 199(4):511-4. PubMed ID: 8818290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluence and wavelength requirements for Arabidopsis CAB gene induction by different phytochromes.
    Hamazato F; Shinomura T; Hanzawa H; Chory J; Furuya M
    Plant Physiol; 1997 Dec; 115(4):1533-40. PubMed ID: 9414562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis.
    Street IH; Shah PK; Smith AM; Avery N; Neff MM
    Plant J; 2008 Apr; 54(1):1-14. PubMed ID: 18088311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of phytochrome B to the control of hypocotyl growth in Arabidopsis.
    Casal JJ
    Planta; 1995; 196(1):23-9. PubMed ID: 7767236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.