These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1033483)

  • 21. Changes in the components and content of biological water in the brain of experimental hydrocephalic rabbits.
    Tamaki N; Yamashita H; Kimura M; Ehara K; Asada M; Nagashima T; Matsumoto S; Hashimoto M
    J Neurosurg; 1990 Aug; 73(2):274-8. PubMed ID: 2195141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dynamics of brain and cerebrospinal fluid growth in normal versus hydrocephalic mice.
    Mandell JG; Neuberger T; Drapaca CS; Webb AG; Schiff SJ
    J Neurosurg Pediatr; 2010 Jul; 6(1):1-10. PubMed ID: 20593980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of osmotic gradients on fluid movement through brain and on choroid plexus secretion in experimental hydrocephalus.
    Hochwald GM; Wald A; Marlin AE; Malhan C
    Trans Am Neurol Assoc; 1976; 101():249-51. PubMed ID: 1028251
    [No Abstract]   [Full Text] [Related]  

  • 24. Evidence for choroid-plexus absorption in hydrocephalus.
    Milhorat TH; Mosher MB; Hammock MK; Murphy CF
    N Engl J Med; 1970 Aug; 283(6):286-9. PubMed ID: 5427058
    [No Abstract]   [Full Text] [Related]  

  • 25. Anaerobic glycolysis preceding white-matter destruction in experimental neonatal hydrocephalus.
    Chumas PD; Drake JM; Del Bigio MR; Da Silva M; Tuor UI
    J Neurosurg; 1994 Mar; 80(3):491-501. PubMed ID: 8113862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dependence of cerebrospinal fluid pressure and volume on the changes in serum osmolarity in cats.
    Jurjević I; Maraković J; Chudy D; Markelić I; Klarica M; Froebe A; Orešković D
    Acta Neurochir Suppl; 2012; 114():351-5. PubMed ID: 22327722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cerebrospinal fluid turnover in experimental hydrocephalic dogs.
    Sahar A; Hochwald GM; Ransohoff J
    Neurology; 1971 Mar; 21(3):218-24. PubMed ID: 5105408
    [No Abstract]   [Full Text] [Related]  

  • 28. Effects of hydrocephalus and surgical decompression on cortical norepinephrine levels in neonatal cats.
    Lovely TJ; McAllister JP; Miller DW; Lamperti AA; Wolfson BJ
    Neurosurgery; 1989 Jan; 24(1):43-52. PubMed ID: 2648177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Movement of sodium from blood and brain into the cerebral ventricles of cats during altered CSF volume flow rates.
    Wald A; Hochwald GM; Malhan C
    Exp Neurol; 1976 Feb; 50(2):304-11. PubMed ID: 1248552
    [No Abstract]   [Full Text] [Related]  

  • 30. Alternate pathway for cerebrospinal fluid absorption in animals with experimental obstructive hydrocephalus.
    Sahar A; Hochwald GM; Ransohoff J
    Exp Neurol; 1969 Oct; 25(2):200-6. PubMed ID: 5394498
    [No Abstract]   [Full Text] [Related]  

  • 31. New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles.
    Klarica M; Oresković D; Bozić B; Vukić M; Butković V; Bulat M
    Neuroscience; 2009 Feb; 158(4):1397-405. PubMed ID: 19111908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Measurement of ventricular fluid pressure and brain tissue pressure in acute experimental communicating hydrocephalus (author's transl)].
    Kuchiwaki H; Hasuo M; Furuse M; Brock M; Dietz H
    No To Shinkei; 1978 Oct; 30(10):1109-13. PubMed ID: 718748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous canine hydrocephalus: cerebrospinal fluid dynamics.
    Sahar A; Hochwald GM; Kay WJ; Ransohoff J
    J Neurol Neurosurg Psychiatry; 1971 Jun; 34(3):308-15. PubMed ID: 5571319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Passage of cerebrospinal fluid into cranial venous sinuses in normal and experimental hydrocephalic cats.
    Sahar A; Hochwald GM; Ransohoff J
    Exp Neurol; 1970 Jul; 28(1):113-22. PubMed ID: 5433655
    [No Abstract]   [Full Text] [Related]  

  • 35. The effect of osmotic gradients on cerebrospinal fluid production and its sodium ion content, and on brain water content.
    Hochwald GM; Wald A; Malhan C
    Trans Am Neurol Assoc; 1974; 99():219-21. PubMed ID: 4463541
    [No Abstract]   [Full Text] [Related]  

  • 36. Hydrocephalus: increased intracranial pressure and brain stem auditory evoked responses in the hydrocephalic rabbit.
    Foltz EL; Blanks JP; McPherson DL
    Neurosurgery; 1987 Feb; 20(2):211-8. PubMed ID: 3561726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphological analysis of progressive hydrocephalus and shunt-dependent arrested hydrocephalus. An experimental study.
    Takei F; Sato O
    Pediatr Neurosurg; 1995; 23(5):246-53. PubMed ID: 8688349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of lateral ventricle and cerebrospinal fluid in normal and hydrocephalic brains.
    Zhu DC; Xenos M; Linninger AA; Penn RD
    J Magn Reson Imaging; 2006 Oct; 24(4):756-70. PubMed ID: 16958068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative studies of edema produced by fluid percussion injury with lateral and central modes of injury in cats.
    Marmarou A; Shima K
    Adv Neurol; 1990; 52():233-6. PubMed ID: 2396517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Altered diffusion and perfusion in hydrocephalic rat brain: a magnetic resonance imaging analysis.
    Massicotte EM; Buist R; Del Bigio MR
    J Neurosurg; 2000 Mar; 92(3):442-7. PubMed ID: 10701531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.