BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10334863)

  • 1. Peroxyvanadium compounds inhibit glucose-6-phosphatase activity and glucagon-stimulated hepatic glucose output in the rat in vivo.
    Westergaard N; Brand CL; Lewinsky RH; Andersen HS; Carr RD; Burchell A; Lundgren K
    Arch Biochem Biophys; 1999 Jun; 366(1):55-60. PubMed ID: 10334863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of hepatic neoglucogenesis and glucose-6-phosphatase by quercetin 3-O-alpha(2''-galloyl)rhamnoside isolated from Bauhinia megalandra leaves.
    Gonzalez-Mujica F; Motta N; Estrada O; Perdomo E; Méndez J; Hasegawa M
    Phytother Res; 2005 Jul; 19(7):624-7. PubMed ID: 16161025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for tyrosine phosphorylation in both activation and inhibition of the insulin receptor tyrosine kinase in vivo.
    Drake PG; Bevan AP; Burgess JW; Bergeron JJ; Posner BI
    Endocrinology; 1996 Nov; 137(11):4960-8. PubMed ID: 8895369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential acute effects of oxovanadiums and insulin on glucose and lactate metabolism under in vivo and in vitro conditions.
    Liu J; Reuland DJ; Rosenhein L; Cao ZX; Franklin LA; Ganguli S
    Metabolism; 1997 May; 46(5):562-72. PubMed ID: 9160825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insulin receptor kinase-associated phosphotyrosine phosphatases in hepatic endosomes: assessing the role of phosphotyrosine phosphatase-1B.
    Li C; Baquiran G; Gu F; Tremblay ML; Fazel A; Bergeron JJ; Posner BI
    Endocrinology; 2006 Feb; 147(2):912-8. PubMed ID: 16269466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo insulin mimetic effects of pV compounds: role for tissue targeting in determining potency.
    Bevan AP; Burgess JW; Yale JF; Drake PG; Lachance D; Baquiran G; Shaver A; Posner BI
    Am J Physiol; 1995 Jan; 268(1 Pt 1):E60-6. PubMed ID: 7840184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanadate inhibits glucose output from isolated perfused rat liver.
    Bruck R; Prigozin H; Krepel Z; Rotenberg P; Shechter Y; Bar-Meir S
    Hepatology; 1991 Sep; 14(3):540-4. PubMed ID: 1874499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of protein tyrosine phosphatases in the regulation of interferon-{gamma}-induced macrophage nitric oxide generation: implication of ERK pathway and AP-1 activation.
    Blanchette J; Pouliot P; Olivier M
    J Leukoc Biol; 2007 Mar; 81(3):835-44. PubMed ID: 17170076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of glucagon on hepatic microsomal glucose-6-phosphatase in vivo.
    Striffler JS; Garfield SA; Cardell EL; Cardell RR
    Diabete Metab; 1984 May; 10(2):91-7. PubMed ID: 6086418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorogenic acid analogue S 3483: a potent competitive inhibitor of the hepatic and renal glucose-6-phosphatase systems.
    Arion WJ; Canfield WK; Ramos FC; Su ML; Burger HJ; Hemmerle H; Schubert G; Below P; Herling AW
    Arch Biochem Biophys; 1998 Mar; 351(2):279-85. PubMed ID: 9514661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of dimethyl sulphoxide on CCl4-induced damage to the liver and its effects on hepatic glutathione and glucose.
    Achudume AC; Aondo UA
    Acta Biol Hung; 1995; 46(1):31-7. PubMed ID: 8714761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of protein tyrosine phosphatase activity in rat liver microsomes: suppressive effect of endogenous regucalcin in transgenic rats.
    Fukaya Y; Yamaguchi M
    Int J Mol Med; 2004 Sep; 14(3):427-32. PubMed ID: 15289895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of two novel and potent competitive inhibitors of the glucose-6-phosphatase catalytic protein.
    Westergaard N; Madsen P; Lundbeck JM; Jakobsen P; Varming A; Andersen B
    Diabetes Obes Metab; 2002 Mar; 4(2):96-105. PubMed ID: 11940106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diets enriched in sucrose or fat increase gluconeogenesis and G-6-Pase but not basal glucose production in rats.
    Commerford SR; Ferniza JB; Bizeau ME; Thresher JS; Willis WT; Pagliassotti MJ
    Am J Physiol Endocrinol Metab; 2002 Sep; 283(3):E545-55. PubMed ID: 12169448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexachlorobenzene impairs glucose metabolism in a rat model of porphyria cutanea tarda: a mechanistic approach.
    Mazzetti MB; Taira MC; Lelli SM; Dascal E; Basabe JC; de Viale LC
    Arch Toxicol; 2004 Jan; 78(1):25-33. PubMed ID: 12898129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upregulation of hepatic glucose 6-phosphatase gene expression in rats treated with an inhibitor of glucose-6-phosphate translocase.
    Simon C; Herling AW; Preibisch G; Burger HJ
    Arch Biochem Biophys; 2000 Jan; 373(2):418-28. PubMed ID: 10620367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin-like and non-insulin-like action of vanadate in hepatocytes cultured in vitro.
    Rosa J; Rosa J
    Coll Antropol; 2004 Jun; 28(1):309-15. PubMed ID: 15636088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vanadate has no effect on insulin-extraction by the rat liver.
    Bruck R; Melzer E; Karasik A; Krepel Z; Bar-Meir S
    Horm Metab Res; 1994 Aug; 26(8):360-2. PubMed ID: 7806130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of glucose uptake by chronic vanadate pretreatment in cardiomyocytes requires PI 3-kinase and p38 MAPK activation.
    Tardif A; Julien N; Chiasson JL; Coderre L
    Am J Physiol Endocrinol Metab; 2003 Jun; 284(6):E1055-64. PubMed ID: 12569083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of vanadate on glucose production in cultured hepatocytes isolated from rats on high saturated fat diet.
    Rosa J; Skala H; Rosa J
    Coll Antropol; 2005 Dec; 29(2):693-6. PubMed ID: 16417184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.