These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Carbon nanotube and graphene-based bioinspired electrochemical actuators. Kong L; Chen W Adv Mater; 2014 Feb; 26(7):1025-43. PubMed ID: 24338697 [TBL] [Abstract][Full Text] [Related]
6. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. Chen L; Liu C; Liu K; Meng C; Hu C; Wang J; Fan S ACS Nano; 2011 Mar; 5(3):1588-93. PubMed ID: 21309550 [TBL] [Abstract][Full Text] [Related]
7. Electromechanical Actuator Ribbons Driven by Electrically Conducting Spring-Like Fibers. Chen P; He S; Xu Y; Sun X; Peng H Adv Mater; 2015 Sep; 27(34):4982-8. PubMed ID: 26192453 [TBL] [Abstract][Full Text] [Related]
8. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites. Chen L; Weng M; Zhang W; Zhou Z; Zhou Y; Xia D; Li J; Huang Z; Liu C; Fan S Nanoscale; 2016 Mar; 8(12):6877-83. PubMed ID: 26959343 [TBL] [Abstract][Full Text] [Related]
9. Strain-capacitance relationship in polymer actuators based on single-walled carbon nanotubes and ionic liquid gels. Randriamahazaka H; Asaka K Faraday Discuss; 2017 Jul; 199():405-422. PubMed ID: 28428985 [TBL] [Abstract][Full Text] [Related]
11. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles. Simaite A; Delagarde A; Tondu B; Souères P; Flahaut E; Bergaud C Nanotechnology; 2017 Jan; 28(2):025502. PubMed ID: 27905315 [TBL] [Abstract][Full Text] [Related]
12. Single-Walled Carbon Nanotube-Reinforced PEDOT: PSS Hybrid Electrodes for High-Performance Ionic Electroactive Polymer Actuator. Tao H; Hu G; Lu S; Li B; Zhang Y; Ru J Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793535 [TBL] [Abstract][Full Text] [Related]
13. Nanostructured carbon materials based electrothermal air pump actuators. Liu Q; Liu L; Kuang J; Dai Z; Han J; Zhang Z Nanoscale; 2014 Jun; 6(12):6932-8. PubMed ID: 24839084 [TBL] [Abstract][Full Text] [Related]
14. Development, Characterization and Electromechanical Actuation Behavior of Ionic Polymer Metal Composite Actuator based on Sulfonated Poly(1,4-phenylene ether-ether-sulfone)/Carbon Nanotubes. Khan A; Jain RK; Banerjee P; Ghosh B; Inamuddin ; Asiri AM Sci Rep; 2018 Jul; 8(1):9909. PubMed ID: 29967364 [TBL] [Abstract][Full Text] [Related]
16. Deterministic Role of Carbon Nanotube-Substrate Coupling for Ultrahigh Actuation in Bilayer Electrothermal Actuators. Ghosh R; Telpande S; Gowda P; Reddy SK; Kumar P; Misra A ACS Appl Mater Interfaces; 2020 Jul; 12(26):29959-29970. PubMed ID: 32500702 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical Actuators with Multicolor Changes and Multidirectional Actuation. Ling Y; Fan H; Wang K; Lu Z; Wang L; Hou C; Zhang Q; Li Y; Li K; Wang H Small; 2022 Apr; 18(15):e2107778. PubMed ID: 35257482 [TBL] [Abstract][Full Text] [Related]
18. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene. Liang J; Huang L; Li N; Huang Y; Wu Y; Fang S; Oh J; Kozlov M; Ma Y; Li F; Baughman R; Chen Y ACS Nano; 2012 May; 6(5):4508-19. PubMed ID: 22512356 [TBL] [Abstract][Full Text] [Related]
19. Increasing efficiency, speed, and responsivity of vanadium dioxide based photothermally driven actuators using single-wall carbon nanotube thin-films. Wang T; Torres D; Fernández FE; Green AJ; Wang C; Sepúlveda N ACS Nano; 2015 Apr; 9(4):4371-8. PubMed ID: 25853931 [TBL] [Abstract][Full Text] [Related]
20. Electromechanical actuation of macroscopic carbon nanotube structures: mats and aligned ribbons. Suppiger D; Busato S; Ermanni P; Motta M; Windle A Phys Chem Chem Phys; 2009 Jul; 11(25):5180-5. PubMed ID: 19562152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]