These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10335600)

  • 1. Modelling and simulation of chemotherapy of haematological and gynaecological cancers.
    Nani FK; Oğuztöreli MN
    IMA J Math Appl Med Biol; 1999 Mar; 16(1):39-91. PubMed ID: 10335600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemotherapy may be delivered based on an integrated view of tumour dynamics.
    Ribba B; You B; Tod M; Girard P; Tranchand B; Trillet-Lenoir V; Freyer G
    IET Syst Biol; 2009 May; 3(3):180-90. PubMed ID: 19449978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A qualitative approach to cell growth modeling and simulation for cancer chemotherapy.
    Gaglio S; Giacomini M; Nicolini C; Ruggiero C
    IEEE Trans Biomed Eng; 1991 Apr; 38(4):386-9. PubMed ID: 1855803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanistic, predictive model of dose-response curves for cell cycle phase-specific and -nonspecific drugs.
    Gardner SN
    Cancer Res; 2000 Mar; 60(5):1417-25. PubMed ID: 10728708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model.
    Iliadis A; Barbolosi D
    Comput Biomed Res; 2000 Jun; 33(3):211-26. PubMed ID: 10860586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated network-based mechanistic model for tumor growth dynamics under drug administration.
    Ribeiro D; Pinto JM
    Comput Biol Med; 2009 Apr; 39(4):368-84. PubMed ID: 19285661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computer simulation of in vivo tumour growth and response to radiotherapy: new algorithms and parametric results.
    Dionysiou DD; Stamatakos GS; Uzunoglu NK; Nikita KS
    Comput Biol Med; 2006 May; 36(5):448-64. PubMed ID: 15916755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling.
    Altinok A; Lévi F; Goldbeter A
    Eur J Pharm Sci; 2009 Jan; 36(1):20-38. PubMed ID: 19041394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell resensitization after delivery of a cycle-specific anticancer drug and effect of dose splitting: learning from tumour cords.
    Bertuzzi A; Fasano A; Gandolfi A; Sinisgalli C
    J Theor Biol; 2007 Feb; 244(3):388-99. PubMed ID: 17074361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling cell population growth with applications to cancer therapy in human tumour cell lines.
    Basse B; Baguley BC; Marshall ES; Wake GC; Wall DJ
    Prog Biophys Mol Biol; 2004; 85(2-3):353-68. PubMed ID: 15142752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance in periodic chemotherapy: a case study of acute myelogenous leukemia.
    Andersen LK; Mackey MC
    J Theor Biol; 2001 Mar; 209(1):113-30. PubMed ID: 11237575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.
    McDougall SR; Anderson AR; Chaplain MA; Sherratt JA
    Bull Math Biol; 2002 Jul; 64(4):673-702. PubMed ID: 12216417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapy burden, drug resistance, and optimal treatment regimen for cancer chemotherapy.
    Boldrini JL; Costa MI
    IMA J Math Appl Med Biol; 2000 Mar; 17(1):33-51. PubMed ID: 10757031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modelling for the assessment of the effect of drug application delays in metronomic chemotherapy of cancer due to physiological constraints.
    Mukherjee A; Majumder D
    Biosystems; 2008 Jan; 91(1):108-16. PubMed ID: 17889991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cell cycle phases of DNA damage and repair initiated by topoisomerase II-targeting chemotherapeutic drugs.
    Potter AJ; Rabinovitch PS
    Mutat Res; 2005 May; 572(1-2):27-44. PubMed ID: 15790488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies.
    McDougall SR; Anderson AR; Chaplain MA
    J Theor Biol; 2006 Aug; 241(3):564-89. PubMed ID: 16487543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear model predictive control for dosing daily anticancer agents using a novel saturating-rate cell-cycle model.
    Florian JA; Eiseman JL; Parker RS
    Comput Biol Med; 2008 Mar; 38(3):339-47. PubMed ID: 18222419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy.
    Ledzewicz U; Schättler H
    Math Biosci; 2007 Apr; 206(2):320-42. PubMed ID: 16197967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regression and regrowth of tumour cords following single-dose anticancer treatment.
    Bertuzzi A; D'Onofrio A; Fasano A; Gandolfi A
    Bull Math Biol; 2003 Sep; 65(5):903-31. PubMed ID: 12909255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells.
    Barbarossa MV; Kuttler C; Zinsl J
    Math Biosci Eng; 2012 Apr; 9(2):241-57. PubMed ID: 22901063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.