These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 10335635)

  • 21. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings.
    Bouchard KE; Conant DF; Anumanchipalli GK; Dichter B; Chaisanguanthum KS; Johnson K; Chang EF
    PLoS One; 2016; 11(3):e0151327. PubMed ID: 27019106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Individual differences in vowel production.
    Johnson K; Ladefoged P; Lindau M
    J Acoust Soc Am; 1993 Aug; 94(2 Pt 1):701-14. PubMed ID: 8370875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modern methods of investigation in speech production.
    Fujimura O
    Phonetica; 1980; 37(1-2):38-54. PubMed ID: 7413768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interspeaker variability in hard palate morphology and vowel production.
    Lammert A; Proctor M; Narayanan S
    J Speech Lang Hear Res; 2013 Dec; 56(6):S1924-33. PubMed ID: 24687447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variability in production of the vowels /i/ and /a/.
    Perkell JS; Nelson WL
    J Acoust Soc Am; 1985 May; 77(5):1889-95. PubMed ID: 3998298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustic and articulatory analysis of French vowels produced by congenitally blind adults and sighted adults.
    Ménard L; Toupin C; Baum SR; Drouin S; Aubin J; Tiede M
    J Acoust Soc Am; 2013 Oct; 134(4):2975-87. PubMed ID: 24116433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phonetic perceptual identification by native- and second-language speakers differentially activates brain regions involved with acoustic phonetic processing and those involved with articulatory-auditory/orosensory internal models.
    Callan DE; Jones JA; Callan AM; Akahane-Yamada R
    Neuroimage; 2004 Jul; 22(3):1182-94. PubMed ID: 15219590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A study of acoustic-to-articulatory inversion of speech by analysis-by-synthesis using chain matrices and the Maeda articulatory model.
    Panchapagesan S; Alwan A
    J Acoust Soc Am; 2011 Apr; 129(4):2144-62. PubMed ID: 21476670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acquisition of vowel articulation in childhood investigated by acoustic-to-articulatory inversion.
    Oohashi H; Watanabe H; Taga G
    Infant Behav Dev; 2017 Feb; 46():178-193. PubMed ID: 28222332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vocal tract normalization for midsagittal articulatory recovery with analysis-by-synthesis.
    McGowan RS; Cushing S
    J Acoust Soc Am; 1999 Aug; 106(2):1090-105. PubMed ID: 10462814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic consequences of differences in male and female vocal tract dimensions.
    Simpson AP
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2153-64. PubMed ID: 11386567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vowel variability and contrast in Childhood Apraxia of Speech: acoustics and articulation.
    Lenoci G; Celata C; Ricci I; Chilosi A; Barone V
    Clin Linguist Phon; 2021 Nov; 35(11):1011-1035. PubMed ID: 33322970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic speech recognition using articulatory features from subject-independent acoustic-to-articulatory inversion.
    Ghosh PK; Narayanan S
    J Acoust Soc Am; 2011 Oct; 130(4):EL251-7. PubMed ID: 21974500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of inter-speaker articulatory variability: A two-level multi-speaker modelling approach based on MRI data.
    Serrurier A; Badin P; Lamalle L; Neuschaefer-Rube C
    J Acoust Soc Am; 2019 Apr; 145(4):2149. PubMed ID: 31046321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Articulatory measurement and synthesis. Methods and preliminary results.
    Heike G
    Phonetica; 1979; 36(4-5):294-301. PubMed ID: 523518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the articulatory space using a hypercube codebook for acoustic-to-articulatory inversion.
    Ouni S; Laprie Y
    J Acoust Soc Am; 2005 Jul; 118(1):444-60. PubMed ID: 16119364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustic modeling of American English /r/.
    Espy-Wilson CY; Boyce SE; Jackson M; Narayanan S; Alwan A
    J Acoust Soc Am; 2000 Jul; 108(1):343-56. PubMed ID: 10923897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward articulatory-acoustic models for liquid approximants based on MRI and EPG data. Part I. The laterals.
    Narayanan SS; Alwan AA; Haker K
    J Acoust Soc Am; 1997 Feb; 101(2):1064-77. PubMed ID: 9035398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study of high front vowels with articulatory data and acoustic simulations.
    Jackson MT; McGowan RS
    J Acoust Soc Am; 2012 Apr; 131(4):3017-35. PubMed ID: 22501077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variability in individual constriction contributions to third formant values in American English /ɹ/.
    Harper S; Goldstein L; Narayanan S
    J Acoust Soc Am; 2020 Jun; 147(6):3905. PubMed ID: 32611162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.