These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10335641)

  • 21. Acoustical Theory of Vowel Modification Strategies in Belting.
    Herbst CT; Story BH; Meyer D
    J Voice; 2023 Apr; ():. PubMed ID: 37080890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formant frequencies and bandwidths of the vocal tract transfer function are affected by the mechanical impedance of the vocal tract wall.
    Fleischer M; Pinkert S; Mattheus W; Mainka A; Mürbe D
    Biomech Model Mechanobiol; 2015 Aug; 14(4):719-33. PubMed ID: 25416844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phonetic applications of the time-corrected instantaneous frequency spectrogram.
    Fulop SA
    Phonetica; 2007; 64(4):237-62. PubMed ID: 18421245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing.
    Mainka A; Poznyakovskiy A; Platzek I; Fleischer M; Sundberg J; Mürbe D
    PLoS One; 2015; 10(7):e0132241. PubMed ID: 26186691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of the actor's/speaker's formant: a study applying spectrum analysis and computer modeling.
    Leino T; Laukkanen AM; Radolf V
    J Voice; 2011 Mar; 25(2):150-8. PubMed ID: 20456915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-Term Average Spectrum Characteristics of Portuguese Fado-Canção from Coimbra.
    Lã FMB; Silva LS; Granqvist S
    J Voice; 2023 Jul; 37(4):631.e7-631.e15. PubMed ID: 33863624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vocal tract area functions from magnetic resonance imaging.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 1996 Jul; 100(1):537-54. PubMed ID: 8675847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Freddie Mercury-acoustic analysis of speaking fundamental frequency, vibrato, and subharmonics.
    Herbst CT; Hertegard S; Zangger-Borch D; Lindestad PÅ
    Logoped Phoniatr Vocol; 2017 Apr; 42(1):29-38. PubMed ID: 27079680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The relations between area functions and the acoustic signal.
    Fant G
    Phonetica; 1980; 37(1-2):55-86. PubMed ID: 7413769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of vocal tract formants in singing and nonperiodic phonation.
    Miller DG; Sulter AM; Schutte HK; Wolf RF
    J Voice; 1997 Mar; 11(1):1-11. PubMed ID: 9075171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A modeling investigation of articulatory variability and acoustic stability during American English /r/ production.
    Nieto-Castanon A; Guenther FH; Perkell JS; Curtin HD
    J Acoust Soc Am; 2005 May; 117(5):3196-212. PubMed ID: 15957787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphological and acoustical analysis of the nasal and the paranasal cavities.
    Dang J; Honda K; Suzuki H
    J Acoust Soc Am; 1994 Oct; 96(4):2088-100. PubMed ID: 7963023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The singer's formant and speaker's ring resonance: a long-term average spectrum analysis.
    Lee SH; Kwon HJ; Choi HJ; Lee NH; Lee SJ; Jin SM
    Clin Exp Otorhinolaryngol; 2008 Jun; 1(2):92-6. PubMed ID: 19434279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aeroacoustic production of low-frequency unvoiced speech sounds.
    Krane MH
    J Acoust Soc Am; 2005 Jul; 118(1):410-27. PubMed ID: 16119362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glottal characteristics of female speakers: acoustic correlates.
    Hanson HM
    J Acoust Soc Am; 1997 Jan; 101(1):466-81. PubMed ID: 9000737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the effect of palate shape on the articulatory-acoustics mapping.
    Bakst S; Johnson K
    J Acoust Soc Am; 2018 Jul; 144(1):EL71. PubMed ID: 30075643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Articulation and vocal tract acoustics at soprano subject's high fundamental frequencies.
    Echternach M; Birkholz P; Traser L; Flügge TV; Kamberger R; Burk F; Burdumy M; Richter B
    J Acoust Soc Am; 2015 May; 137(5):2586-95. PubMed ID: 25994691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological and acoustic characteristics of the male music theatre voice.
    Bourne T; Garnier M; Samson A
    J Acoust Soc Am; 2016 Jul; 140(1):610. PubMed ID: 27475183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002.
    Story BH
    J Acoust Soc Am; 2008 Jan; 123(1):327-35. PubMed ID: 18177162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward a definition of male 'head' register, passaggio, and 'cover' in western operatic singing.
    Miller DG; Schutte HK
    Folia Phoniatr Logop; 1994; 46(4):157-70. PubMed ID: 8069357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.