These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10335647)

  • 1. Abstract exercises in cochlear modeling: reply to "What should be the goals of cochlear modeling?" [J. Acoust. Soc. Am. 102, 3054 (1997)].
    de Boer E
    J Acoust Soc Am; 1999 May; 105(5):2984. PubMed ID: 10335647
    [No Abstract]   [Full Text] [Related]  

  • 2. On solution techniques for cochlear models: reply to "Comments on 'a method for forward and inverse solutions of a three-dimensional model of the cochlea'" [J. Acoust. Soc. Am. 103, 3729 (1998)].
    de Boer E
    J Acoust Soc Am; 1999 May; 105(5):2985-6. PubMed ID: 10335648
    [No Abstract]   [Full Text] [Related]  

  • 3. On the fluid-structure interaction in the cochlea.
    Rapson MJ; Hamilton TJ; Tapson JC
    J Acoust Soc Am; 2014 Jul; 136(1):284-300. PubMed ID: 24993214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realistic mechanical tuning in a micromechanical cochlear model.
    Kolston PJ; Viergever MA; de Boer E; Diependaal RJ
    J Acoust Soc Am; 1989 Jul; 86(1):133-40. PubMed ID: 2754106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling of cochlear mechanics.
    Neely ST
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 2):345-52. PubMed ID: 4031241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unification and extension of monolithic state space and iterative cochlear models.
    Rapson MJ; Tapson JC; Karpul D
    J Acoust Soc Am; 2012 May; 131(5):3935-52. PubMed ID: 22559368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of perilymph viscosity on low-frequency intracochlear pressures and the cochlear input impedance of the cat.
    Koshigoe S; Kwok WK; Tubis A
    J Acoust Soc Am; 1983 Aug; 74(2):486-92. PubMed ID: 6619426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of WKB and finite difference calculations for a two-dimensional cochlear model.
    Steele CR; Taber LA
    J Acoust Soc Am; 1979 Apr; 65(4):1001-6. PubMed ID: 447913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved WKB calculation for a two-dimensional cochlear model.
    Steele CR; Miller CE
    J Acoust Soc Am; 1980 Jul; 68(1):147-8. PubMed ID: 7391356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A symmetry suppresses the cochlear catastrophe.
    Shera CA; Zweig G
    J Acoust Soc Am; 1991 Mar; 89(3):1276-89. PubMed ID: 2030215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different models of the active cochlea, and how to implement them in the state-space formalism.
    Sisto R; Moleti A; Paternoster N; Botti T; Bertaccini D
    J Acoust Soc Am; 2010 Sep; 128(3):1191-202. PubMed ID: 20815455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Letter: Recording the electrocochleographic (ECochG) response in humans: a reply to A.C. Coats (J. Acoust. Soc. Am. 56, 708-711(1974)).
    Moore EJ
    J Acoust Soc Am; 1976 Jun; 59(6):1504-5. PubMed ID: 939882
    [No Abstract]   [Full Text] [Related]  

  • 13. Comments on "Species differences in cochlear fatigue related to acoustics of outer and middle ears of guinea pig and chinchilla" (J. Acoust. Soc. Am. 56, 929-934 (1974)).
    Sinyor A; Laszlo CA
    J Acoust Soc Am; 1976 Feb; 59(2):472. PubMed ID: 1249335
    [No Abstract]   [Full Text] [Related]  

  • 14. Nonlinear and active two-dimensional cochlear models: time-domain solution.
    Diependaal RJ; Viergever MA
    J Acoust Soc Am; 1989 Feb; 85(2):803-12. PubMed ID: 2925995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistics of instabilities in a state space model of the human cochlea.
    Ku EM; Elliott SJ; Lineton B
    J Acoust Soc Am; 2008 Aug; 124(2):1068-79. PubMed ID: 18681597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comment on "Temporal modulation transfer functions in patients with cochlear implants" [J. Acoust. Soc. Am. 91,2156-2164 (1992)].
    Kohlrausch A
    J Acoust Soc Am; 1993 Mar; 93(3):1649-52. PubMed ID: 8473614
    [No Abstract]   [Full Text] [Related]  

  • 17. Modeling otoacoustic emission and hearing threshold fine structures.
    Talmadge CL; Tubis A; Long GR; Piskorski P
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1517-43. PubMed ID: 9745736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limit cycle oscillations in a nonlinear state space model of the human cochlea.
    Ku EM; Elliott SJ; Lineton B
    J Acoust Soc Am; 2009 Aug; 126(2):739-50. PubMed ID: 19640040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracochlear pressure and derived quantities from a three-dimensional model.
    Yoon YJ; Puria S; Steele CR
    J Acoust Soc Am; 2007 Aug; 122(2):952-66. PubMed ID: 17672644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cochlear model including three-dimensional fluid and four modes of partition flexibility.
    Taber LA; Steele CR
    J Acoust Soc Am; 1981 Aug; 70(2):426-36. PubMed ID: 7288028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.