BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10336685)

  • 1. Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms.
    Bezard E; Boraud T; Bioulac B; Gross CE
    Eur J Neurosci; 1999 Jun; 11(6):2167-70. PubMed ID: 10336685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism.
    Wichmann T; Bergman H; DeLong MR
    J Neurophysiol; 1994 Aug; 72(2):521-30. PubMed ID: 7983516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism.
    Bergman H; Wichmann T; Karmon B; DeLong MR
    J Neurophysiol; 1994 Aug; 72(2):507-20. PubMed ID: 7983515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate.
    Aziz TZ; Peggs D; Sambrook MA; Crossman AR
    Mov Disord; 1991; 6(4):288-92. PubMed ID: 1758446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
    Mitchell IJ; Clarke CE; Boyce S; Robertson RG; Peggs D; Sambrook MA; Crossman AR
    Neuroscience; 1989; 32(1):213-26. PubMed ID: 2586750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural mechanisms mediating 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-induced parkinsonism in the monkey: relative contributions of the striatopallidal and striatonigral pathways as suggested by 2-deoxyglucose uptake.
    Mitchell IJ; Cross AJ; Sambrook MA; Crossman AR
    Neurosci Lett; 1986 Jan; 63(1):61-5. PubMed ID: 3485267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alleviation of experimental hemiparkinsonism by high-frequency stimulation of the subthalamic nucleus in primates: a comparison with L-Dopa treatment.
    Benazzouz A; Boraud T; Féger J; Burbaud P; Bioulac B; Gross C
    Mov Disord; 1996 Nov; 11(6):627-32. PubMed ID: 8914087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does increased excitatory drive from the subthalamic nucleus contribute to dopaminergic neuronal death in Parkinson's disease?
    Luquin MR; Saldise L; Guillén J; Belzunegui S; San Sebastián W; Izal A; Garrido P; Vázquez M
    Exp Neurol; 2006 Oct; 201(2):407-15. PubMed ID: 16806173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism.
    Nini A; Feingold A; Slovin H; Bergman H
    J Neurophysiol; 1995 Oct; 74(4):1800-5. PubMed ID: 8989416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism.
    Filion M; Tremblay L; Bédard PJ
    Brain Res; 1991 Apr; 547(1):152-61. PubMed ID: 1677608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in glutamate receptors in dyskinetic parkinsonian monkeys after unilateral subthalamotomy.
    Jourdain VA; Morin N; Grégoire L; Morissette M; Di Paolo T
    J Neurosurg; 2015 Dec; 123(6):1383-93. PubMed ID: 25932606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism.
    Filion M; Tremblay L
    Brain Res; 1991 Apr; 547(1):142-51. PubMed ID: 1677607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamatergic compensatory mechanisms in experimental parkinsonism.
    Bezard E; Bioulac B; Gross CE
    Prog Neuropsychopharmacol Biol Psychiatry; 1998 May; 22(4):609-23. PubMed ID: 9682276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of riluzole on the electrophysiological activity of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkey.
    Boraud T; Bezard E; Stutzmann JM; Bioulac B; Gross CE
    Neurosci Lett; 2000 Mar; 281(2-3):75-8. PubMed ID: 10704746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subthalamo-pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia.
    Tachibana Y; Iwamuro H; Kita H; Takada M; Nambu A
    Eur J Neurosci; 2011 Nov; 34(9):1470-84. PubMed ID: 22034978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological data.
    Benazzouz A; Piallat B; Pollak P; Benabid AL
    Neurosci Lett; 1995 Apr; 189(2):77-80. PubMed ID: 7609923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lesions in monkey globus pallidus externus exacerbate parkinsonian symptoms.
    Zhang J; Russo GS; Mewes K; Rye DB; Vitek JL
    Exp Neurol; 2006 Jun; 199(2):446-53. PubMed ID: 16487515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the subthalamic nucleus in the origin of hemiballism and parkinsonism: new surgical perspectives.
    Guridi J; Obeso JA
    Adv Neurol; 1997; 74():235-47. PubMed ID: 9348418
    [No Abstract]   [Full Text] [Related]  

  • 19. Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys.
    Benazzouz A; Gross C; Féger J; Boraud T; Bioulac B
    Eur J Neurosci; 1993 Apr; 5(4):382-9. PubMed ID: 8261116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pallidal border cells: an anatomical and electrophysiological study in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkey.
    Bezard E; Boraud T; Chalon S; Brotchie JM; Guilloteau D; Gross CE
    Neuroscience; 2001; 103(1):117-23. PubMed ID: 11311792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.