These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10336885)

  • 1. Space travel directly induces skeletal muscle atrophy.
    Vandenburgh H; Chromiak J; Shansky J; Del Tatto M; Lemaire J
    FASEB J; 1999 Jun; 13(9):1031-8. PubMed ID: 10336885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space.
    Tascher G; Brioche T; Maes P; Chopard A; O'Gorman D; Gauquelin-Koch G; Blanc S; Bertile F
    J Proteome Res; 2017 Jul; 16(7):2623-2638. PubMed ID: 28590761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional and structural adaptations of skeletal muscle to microgravity.
    Fitts RH; Riley DR; Widrick JJ
    J Exp Biol; 2001 Sep; 204(Pt 18):3201-8. PubMed ID: 11581335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats.
    Riley DA; Ilyina-Kakueva EI; Ellis S; Bain JL; Slocum GR; Sedlak FR
    FASEB J; 1990 Jan; 4(1):84-91. PubMed ID: 2153085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of primary spaceflight-induced and secondary reloading-induced changes in slow antigravity muscles of rats.
    Riley DA
    Adv Space Res; 1998; 21(8-9):1073-5. PubMed ID: 11541353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spaceflight on STS-48 and earth-based unweighting produce similar effects on skeletal muscle of young rats.
    Tischler ME; Henriksen EJ; Munoz KA; Stump CS; Woodman CR; Kirby CR
    J Appl Physiol (1985); 1993 May; 74(5):2161-5. PubMed ID: 8335544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Musculoskeletal adaptations to weightlessness and development of effective countermeasures.
    Baldwin KM; White TP; Arnaud SB; Edgerton VR; Kraemer WJ; Kram R; Raab-Cullen D; Snow CM
    Med Sci Sports Exerc; 1996 Oct; 28(10):1247-53. PubMed ID: 8897381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and metabolic characteristics of rhesus monkey m. soleus after spaceflight.
    Shenkman BS; Belozerova IN; Lee P; Nemirovskaya TL
    J Gravit Physiol; 2000 Jan; 7(1):S39-42. PubMed ID: 11543455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice.
    Gambara G; Salanova M; Ciciliot S; Furlan S; Gutsmann M; Schiffl G; Ungethuem U; Volpe P; Gunga HC; Blottner D
    PLoS One; 2017; 12(1):e0169314. PubMed ID: 28076365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Masticatory muscles of mouse do not undergo atrophy in space.
    Philippou A; Minozzo FC; Spinazzola JM; Smith LR; Lei H; Rassier DE; Barton ER
    FASEB J; 2015 Jul; 29(7):2769-79. PubMed ID: 25795455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on the adaptation of skeletal muscle to hypogravity: past and future directions.
    Riley DA; Ellis S
    Adv Space Res; 1983; 3(9):191-7. PubMed ID: 11542447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fiber size and myosin phenotypes of selected rhesus lower limb muscles after a 14-day spaceflight.
    Roy RR; Zhong H; Bodine SC; Pierotti DJ; Talmadge RJ; Barkhoudarian G; Kim J; Fanton JW; Kozlovskaya IB; Edgerton VR
    J Gravit Physiol; 2000 Jan; 7(1):S45. PubMed ID: 11543457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of disuse-induced skeletal muscle atrophy: exercise and nutrition countermeasures to prevent protein loss.
    Bajotto G; Shimomura Y
    J Nutr Sci Vitaminol (Tokyo); 2006 Aug; 52(4):233-47. PubMed ID: 17087049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential adaptation to weightlessness of functional and structural characteristics of rat hindlimb muscles.
    Stevens L; Picquet F; Catinot MP; Mounier Y
    J Gravit Physiol; 1996 Sep; 3(2):54-7. PubMed ID: 11540282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiology of a microgravity environment invited review: microgravity and skeletal muscle.
    Fitts RH; Riley DR; Widrick JJ
    J Appl Physiol (1985); 2000 Aug; 89(2):823-39. PubMed ID: 10926670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures.
    Booth FW; Criswell DS
    Int J Sports Med; 1997 Oct; 18 Suppl 4():S265-9. PubMed ID: 9391829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of spaceflight on single fiber function of triceps and biceps muscles in rhesus monkeys.
    Mounier Y; Stevens L; Shenkman BS; Kischel P; Lenfant AM; Montel V; Catinot MP; Toursel T; Picquet F
    J Gravit Physiol; 2000 Jan; 7(1):S51-2. PubMed ID: 11543459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A morphological study of skeletal muscles of rats flown aboard the space laboratory SLS-2].
    Il'ina-Kakueva EI; Babakova LL; Demorzhi MS; Pozdniakov OM
    Aviakosm Ekolog Med; 1995; 29(6):12-8. PubMed ID: 8664880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps.
    Radugina EA; Almeida EAC; Blaber E; Poplinskaya VA; Markitantova YV; Grigoryan EN
    Life Sci Space Res (Amst); 2018 Feb; 16():18-25. PubMed ID: 29475516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber size and myosin phenotypes of selected Rhesus hindlimb muscles after a 14-day spaceflight.
    Roy RR; Bodine SC; Pierotti DJ; Kim JA; Talmadge RJ; Barkhoudarian G; Fanton JW; Koslovskaya I; Edgerton VR
    J Gravit Physiol; 1999 Oct; 6(2):55-62. PubMed ID: 11543086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.