These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 10337570)

  • 1. Biomagnetic approaches to studying the brain.
    Ueno S
    IEEE Eng Med Biol Mag; 1999; 18(3):108-20. PubMed ID: 10337570
    [No Abstract]   [Full Text] [Related]  

  • 2. Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices.
    Kirimoto H; Ogata K; Onishi H; Oyama M; Goto Y; Tobimatsu S
    Clin Neurophysiol; 2011 Apr; 122(4):777-83. PubMed ID: 21074492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered motor cortex excitability in tinnitus patients: a hint at crossmodal plasticity.
    Langguth B; Eichhammer P; Zowe M; Kleinjung T; Jacob P; Binder H; Sand P; Hajak G
    Neurosci Lett; 2005 Jun; 380(3):326-9. PubMed ID: 15862911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability.
    Lang N; Nitsche MA; Paulus W; Rothwell JC; Lemon RN
    Exp Brain Res; 2004 Jun; 156(4):439-43. PubMed ID: 14745467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of TMS on the primary motor cortex and associated spinal systems.
    Valero-Cabré A; Pascual-Leone A
    IEEE Eng Med Biol Mag; 2005; 24(1):29-35. PubMed ID: 15709533
    [No Abstract]   [Full Text] [Related]  

  • 6. Repetitive training of a synchronised movement induces short-term plastic changes in the human primary somatosensory cortex.
    Schwenkreis P; Pleger B; Höffken O; Malin JP; Tegenthoff M
    Neurosci Lett; 2001 Oct; 312(2):99-102. PubMed ID: 11595344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans.
    Perez MA; Lungholt BK; Nyborg K; Nielsen JB
    Exp Brain Res; 2004 Nov; 159(2):197-205. PubMed ID: 15549279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of the motor cortex by magnetic stimulation of the cerebellum.
    Pinto AD; Chen R
    Exp Brain Res; 2001 Oct; 140(4):505-10. PubMed ID: 11685404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of complete section of corpus callosum and massa intermedia on feline penicillin-induced thalamic focus.
    Soga T; Matsumoto K
    Jpn J Psychiatry Neurol; 1990 Jun; 44(2):424-5. PubMed ID: 2259039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of the amplitude of somatosensory evoked potentials following magnetic pulse stimulation of the human brain.
    Seyal M; Browne JK; Masuoka LK; Gabor AJ
    Electroencephalogr Clin Neurophysiol; 1993; 88(1):20-7. PubMed ID: 7681387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of cortically evoked potentials with motor imagery during post-exercise depression of corticospinal excitability.
    Pitcher JB; Robertson AL; Clover EC; Jaberzadeh S
    Exp Brain Res; 2005 Jan; 160(4):409-17. PubMed ID: 15502993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand.
    Swayne O; Rothwell J; Rosenkranz K
    Clin Neurophysiol; 2006 Apr; 117(4):855-63. PubMed ID: 16448846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex.
    Chen R; Yung D; Li JY
    J Neurophysiol; 2003 Mar; 89(3):1256-64. PubMed ID: 12611955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials.
    Ishikawa S; Matsunaga K; Nakanishi R; Kawahira K; Murayama N; Tsuji S; Huang YZ; Rothwell JC
    Clin Neurophysiol; 2007 May; 118(5):1033-43. PubMed ID: 17382582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of persistent changes in the organisation of the human motor cortex.
    McKay DR; Ridding MC; Thompson PD; Miles TS
    Exp Brain Res; 2002 Apr; 143(3):342-9. PubMed ID: 11889512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional connectivity between non-primary motor cortex and primary motor and sensory areas investigated in humans with TDCS and rTMS.
    Suppa A; Berardelli A
    Clin Neurophysiol; 2011 Apr; 122(4):643-4. PubMed ID: 21067969
    [No Abstract]   [Full Text] [Related]  

  • 17. Spatial reorganization of cortical motor output maps of stump muscles in human upper-limb amputees.
    Irlbacher K; Meyer BU; Voss M; Brandt SA; Röricht S
    Neurosci Lett; 2002 Mar; 321(3):129-32. PubMed ID: 11880189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quadro-pulse stimulation is more effective than paired-pulse stimulation for plasticity induction of the human motor cortex.
    Hamada M; Hanajima R; Terao Y; Arai N; Furubayashi T; Inomata-Terada S; Yugeta A; Matsumoto H; Shirota Y; Ugawa Y
    Clin Neurophysiol; 2007 Dec; 118(12):2672-82. PubMed ID: 17977788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans.
    Tsuji T; Rothwell JC
    J Physiol; 2002 Apr; 540(Pt 1):367-76. PubMed ID: 11927693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential activation of nerve fibers with magnetic stimulation in humans.
    Tuday EC; Olree KS; Horch KW
    BMC Neurosci; 2006 Jul; 7():58. PubMed ID: 16863593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.