BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 10338013)

  • 1. Ternary complex structure of human HGPRTase, PRPP, Mg2+, and the inhibitor HPP reveals the involvement of the flexible loop in substrate binding.
    Balendiran GK; Molina JA; Xu Y; Torres-Martinez J; Stevens R; Focia PJ; Eakin AE; Sacchettini JC; Craig SP
    Protein Sci; 1999 May; 8(5):1023-31. PubMed ID: 10338013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of free human hypoxanthine-guanine phosphoribosyltransferase reveals extensive conformational plasticity throughout the catalytic cycle.
    Keough DT; Brereton IM; de Jersey J; Guddat LW
    J Mol Biol; 2005 Aug; 351(1):170-81. PubMed ID: 15990111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approaching the transition state in the crystal structure of a phosphoribosyltransferase.
    Focia PJ; Craig SP; Eakin AE
    Biochemistry; 1998 Dec; 37(49):17120-7. PubMed ID: 9860824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the flexible loop of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus in enzyme catalysis.
    Munagala N; Basus VJ; Wang CC
    Biochemistry; 2001 Apr; 40(14):4303-11. PubMed ID: 11284686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altering the purine specificity of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus by structure-based point mutations in the enzyme protein.
    Munagala NR; Wang CC
    Biochemistry; 1998 Nov; 37(47):16612-9. PubMed ID: 9843428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase with XMP, pyrophosphate, and two Mg(2+) ions bound: insights into the catalytic mechanism.
    Héroux A; White EL; Ross LJ; Davis RL; Borhani DW
    Biochemistry; 1999 Nov; 38(44):14495-506. PubMed ID: 10545171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate deformation in a hypoxanthine-guanine phosphoribosyltransferase ternary complex: the structural basis for catalysis.
    Héroux A; White EL; Ross LJ; Kuzin AP; Borhani DW
    Structure; 2000 Dec; 8(12):1309-18. PubMed ID: 11188695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the functional role of active site loop II in a hypoxanthine phosphoribosyltransferase.
    Lee CC; Medrano FJ; Craig SP; Eakin AE
    Biochim Biophys Acta; 2001 Jul; 1537(1):63-70. PubMed ID: 11476964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic mechanism of human hypoxanthine-guanine phosphoribosyltransferase: rapid phosphoribosyl transfer chemistry.
    Xu Y; Eads J; Sacchettini JC; Grubmeyer C
    Biochemistry; 1997 Mar; 36(12):3700-12. PubMed ID: 9132023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis in human hypoxanthine-guanine phosphoribosyltransferase: Asp 137 acts as a general acid/base.
    Xu Y; Grubmeyer C
    Biochemistry; 1998 Mar; 37(12):4114-24. PubMed ID: 9521733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saturation mutagenesis, complement selection, and steady-state kinetic studies illuminate the roles of invariant residues in active site loop I of the hypoxanthine phosphoribosyltransferase from Trypanosoma cruzi.
    Butterworth AC; Medrano FJ; Eakin AE; Craig SP
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):87-94. PubMed ID: 15158715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional roles for amino acids in active site loop II of a hypoxanthine phosphoribosyltransferase.
    Medrano FJ; Wenck MA; Eakin AE; Craig SP
    Biochim Biophys Acta; 2003 Aug; 1650(1-2):105-16. PubMed ID: 12922174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motional dynamics of the catalytic loop in OMP synthase.
    Wang GP; Cahill SM; Liu X; Girvin ME; Grubmeyer C
    Biochemistry; 1999 Jan; 38(1):284-95. PubMed ID: 9890909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions at the 2 and 5 positions of 5-phosphoribosyl pyrophosphate are essential in Salmonella typhimurium quinolinate phosphoribosyltransferase.
    Bello Z; Stitt B; Grubmeyer C
    Biochemistry; 2010 Feb; 49(7):1377-87. PubMed ID: 20047307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substitution of lysine for arginine at position 199 of a hypoxanthine phosphoribosyltransferase interferes with binding of the primary substrate to the active site.
    Craig SP; Focia PJ; Fletterick RJ
    Biochim Biophys Acta; 1997 Apr; 1339(1):1-3. PubMed ID: 9165092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Point mutations in the guanine phosphoribosyltransferase from Giardia lamblia modulate pyrophosphate binding and enzyme catalysis.
    Page JP; Munagala NR; Wang CC
    Eur J Biochem; 1999 Feb; 259(3):565-71. PubMed ID: 10092838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state kinetics of the hypoxanthine phosphoribosyltransferase from Trypanosoma cruzi.
    Wenck MA; Medrano FJ; Eakin AE; Craig SP
    Biochim Biophys Acta; 2004 Jul; 1700(1):11-8. PubMed ID: 15210120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative IMP binding in feedback inhibition of hypoxanthine-guanine phosphoribosyltransferase from Thermoanaerobacter tengcongensis.
    Chen Q; Liang Y; Su X; Gu X; Zheng X; Luo M
    J Mol Biol; 2005 May; 348(5):1199-210. PubMed ID: 15854655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulation of hypoxanthine guanine phosphoribosyl transferase activity through transfer of PRPP by metabolic cooperation.
    Vitkauskas G; Canellakis ES
    Exp Cell Res; 1984 Jun; 152(2):541-51. PubMed ID: 6202536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanism of uracil phosphoribosyltransferase from Escherichia coli and catalytic importance of the conserved proline in the PRPP binding site.
    Lundegaard C; Jensen KF
    Biochemistry; 1999 Mar; 38(11):3327-34. PubMed ID: 10079076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.