BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 10338282)

  • 1. Neural transplantation of hNT neurons for Huntington's disease.
    Hurlbert MS; Gianani RI; Hutt C; Freed CR; Kaddis FG
    Cell Transplant; 1999; 8(1):143-51. PubMed ID: 10338282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transplanted hNT cells ("LBS neurons") in a rat model of huntington's disease: good survival, incomplete differentiation, and limited functional recovery.
    Fricker-Gates RA; Muir JA; Dunnett SB
    Cell Transplant; 2004; 13(2):123-36. PubMed ID: 15129758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of calcium-binding proteins expressed in cultured hNT neurons and hNT neurons transplanted into the rat striatum.
    Saporta S; Willing AE; Zigova T; Daadi MM; Sanberg PR
    Exp Neurol; 2001 Feb; 167(2):252-9. PubMed ID: 11161613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fetal striatal transplants restore electrophysiological sensitivity to dopamine in the lesioned striatum of rats with experimental Huntington's disease.
    Chen GJ; Jeng CH; Lin SZ; Tsai SH; Wang Y; Chiang YH
    J Biomed Sci; 2002; 9(4):303-10. PubMed ID: 12145527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrastriatal and intranigral grafting of hNT neurons in the 6-OHDA rat model of Parkinson's disease.
    Baker KA; Hong M; Sadi D; Mendez I
    Exp Neurol; 2000 Apr; 162(2):350-60. PubMed ID: 10739641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human neural stem cell transplants improve motor function in a rat model of Huntington's disease.
    McBride JL; Behrstock SP; Chen EY; Jakel RJ; Siegel I; Svendsen CN; Kordower JH
    J Comp Neurol; 2004 Jul; 475(2):211-9. PubMed ID: 15211462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long distance selective fiber outgrowth of transplanted hNT neurons in white matter tracts of the adult rat brain.
    Baker KA; Mendez I
    J Comp Neurol; 2005 Jun; 486(4):318-30. PubMed ID: 15846787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of dopamine receptors and associated mRNA in transplants of human fetal striatal tissue in rodents with experimental Huntington's disease.
    Pundt LL; Narang N; Kondoh T; Low WC
    Neurosci Res; 1997 Apr; 27(4):305-15. PubMed ID: 9152043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain repair in a unilateral rat model of Huntington's disease: new insights into impairment and restoration of forelimb movement patterns.
    Klein A; Lane EL; Dunnett SB
    Cell Transplant; 2013; 22(10):1735-51. PubMed ID: 23067670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hibernated human fetal striatal tissue: successful transplantation in a rat model of Huntington's disease.
    Hurelbrink CB; Armstrong RJ; Barker RA; Dunnett SB; Rosser AE
    Cell Transplant; 2000; 9(6):743-9. PubMed ID: 11202561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DARPP-32-rich zones in grafts of lateral ganglionic eminence govern the extent of functional recovery in skilled paw reaching in an animal model of Huntington's disease.
    Nakao N; Grasbon-Frodl EM; Widner H; Brundin P
    Neuroscience; 1996 Oct; 74(4):959-70. PubMed ID: 8895865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural grafts and pharmacological intervention in a model of Huntington's disease.
    Giordano M; Ford LM; Shipley MT; Sanberg PR
    Brain Res Bull; 1990 Sep; 25(3):453-65. PubMed ID: 1963345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histological findings on fetal striatal grafts in a Huntington's disease patient early after transplantation.
    Capetian P; Knoth R; Maciaczyk J; Pantazis G; Ditter M; Bokla L; Landwehrmeyer GB; Volk B; Nikkhah G
    Neuroscience; 2009 May; 160(3):661-75. PubMed ID: 19254752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo characterization of hNT neuron neurotransmitter phenotypes.
    Saporta S; Willing AE; Colina LO; Zigova T; Milliken M; Daadi MM; Sanberg PR
    Brain Res Bull; 2000 Oct; 53(3):263-8. PubMed ID: 11113579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryonic striatal grafts restore neuronal activity of the globus pallidus in a rodent model of Huntington's disease.
    Nakao N; Ogura M; Nakai K; Itakura T
    Neuroscience; 1999 Jan; 88(2):469-77. PubMed ID: 10197767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of lateralized training on spontaneous forelimb preference, lesion deficits, and graft-mediated functional recovery after unilateral striatal lesions in rats.
    Döbrössy MD; Dunnett SB
    Exp Neurol; 2006 Jun; 199(2):373-83. PubMed ID: 16499910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease.
    Vazey EM; Chen K; Hughes SM; Connor B
    Exp Neurol; 2006 Jun; 199(2):384-96. PubMed ID: 16626705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis.
    Schackel S; Pauly MC; Piroth T; Nikkhah G; Döbrössy MD
    Behav Brain Res; 2013 Nov; 256():56-63. PubMed ID: 23916743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fetal tissue transplants in animal models of Huntington's disease: the effects on damaged neuronal circuitry and behavioral deficits.
    Nakao N; Itakura T
    Prog Neurobiol; 2000 Jun; 61(3):313-38. PubMed ID: 10727778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular delivery of human CNTF prevents motor and cognitive dysfunction in a rodent model of Huntington's disease.
    Emerich DF; Cain CK; Greco C; Saydoff JA; Hu ZY; Liu H; Lindner MD
    Cell Transplant; 1997; 6(3):249-66. PubMed ID: 9171158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.