These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10338310)

  • 41. Kainic acid activates transient expression of tenascin-C in the adult rat hippocampus.
    Nakic M; Mitrovic N; Sperk G; Schachner M
    J Neurosci Res; 1996 May; 44(4):355-62. PubMed ID: 8739155
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo regulation of glial cell line-derived neurotrophic factor-inducible transcription factor by kainic acid.
    Eisch AJ; Lammers CH; Yajima S; Mouradian MM; Nestler EJ
    Neuroscience; 1999; 94(2):629-36. PubMed ID: 10579223
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hexokinase I messenger RNA in the rat central nervous system.
    Jacobsson G; Meister B
    Mol Cell Neurosci; 1994 Dec; 5(6):658-77. PubMed ID: 7704441
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Seizure-induced increases in NGF mRNA exhibit different time courses across forebrain regions and are biphasic in hippocampus.
    Lauterborn JC; Isackson PJ; Gall CM
    Exp Neurol; 1994 Jan; 125(1):22-40. PubMed ID: 8307122
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transient forebrain ischemia induces delayed injury in the substantia nigra reticulata: degeneration of GABA neurons, compensatory expression of GAD mRNA.
    Saji M; Cohen M; Blau AD; Wessel TC; Volpe BT
    Brain Res; 1994 Apr; 643(1-2):234-44. PubMed ID: 8032919
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential regulation of primary protein kinase C substrate (MARCKS, MLP, GAP-43, RC3) mRNAs in the hippocampus during kainic acid-induced seizures and synaptic reorganization.
    McNamara RK; Lenox RH
    J Neurosci Res; 2000 Nov; 62(3):416-26. PubMed ID: 11054811
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kainate-induced zinc translocation from presynaptic terminals causes neuronal and astroglial cell death and mRNA loss of BDNF receptors in the hippocampal formation and amygdala.
    Revuelta M; Castaño A; Machado A; Cano J; Venero JL
    J Neurosci Res; 2005 Oct; 82(2):184-95. PubMed ID: 16175575
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Seizure-related changes in the glutamate R2 and R5 receptor genes expression in the rat hippocampal formation.
    Lasoń W; Turchan J; Przewłocka B; Labuz D; Mika J; Przewłocki R
    J Neural Transm (Vienna); 1997; 104(2-3):125-33. PubMed ID: 9203076
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Patterns of developmental expression of the RNA editing enzyme rADAR2.
    Paupard M-C ; O'Connell MA; Gerber AP; Zukin RS
    Neuroscience; 2000; 95(3):869-79. PubMed ID: 10670454
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia.
    Porter RH; Eastwood SL; Harrison PJ
    Brain Res; 1997 Mar; 751(2):217-31. PubMed ID: 9099808
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crucial role of kainate receptors in mediating striatal kainate injection-induced decrease in acetylcholine M(1) receptor binding in rat forebrain.
    Jin S; Yang J; Lee WL; Wong PT
    Brain Res; 2000 Nov; 882(1-2):128-38. PubMed ID: 11056192
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distribution of the nociceptin and nocistatin precursor transcript in the mouse central nervous system.
    Boom A; Mollereau C; Meunier JC; Vassart G; Parmentier M; Vanderhaeghen JJ; Schiffmann SN
    Neuroscience; 1999; 91(3):991-1007. PubMed ID: 10391477
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spontaneous and stimulation-induced synchronized burst afterdischarges in the isolated CA1 of kainate-treated rats.
    Meier CL; Dudek FE
    J Neurophysiol; 1996 Oct; 76(4):2231-9. PubMed ID: 8899598
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elevated cathepsin D expression in kainate-evoked rat brain neurodegeneration.
    Hetman M; Filipkowski RK; Domagala W; Kaczmarek L
    Exp Neurol; 1995 Nov; 136(1):53-63. PubMed ID: 7589334
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An immunocytochemical study of mitochondrial manganese-superoxide dismutase in the rat hippocampus after kainate administration.
    Kim HC; Jhoo WK; Kim WK; Suh JH; Shin EJ; Kato K; Ho Ko K
    Neurosci Lett; 2000 Mar; 281(1):65-8. PubMed ID: 10686417
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sensitivity of hippocampal neurones to kainic acid, and antagonism by kynurenate.
    Stone TW
    Br J Pharmacol; 1990 Dec; 101(4):847-52. PubMed ID: 1964821
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temporal progression of kainic acid induced neuronal and myelin degeneration in the rat forebrain.
    Hopkins KJ; Wang G; Schmued LC
    Brain Res; 2000 May; 864(1):69-80. PubMed ID: 10793188
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stereological analysis of forebrain regions in kainate-treated epileptic rats.
    Chen S; Buckmaster PS
    Brain Res; 2005 Sep; 1057(1-2):141-52. PubMed ID: 16122711
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system.
    Yan Q; Rosenfeld RD; Matheson CR; Hawkins N; Lopez OT; Bennett L; Welcher AA
    Neuroscience; 1997 May; 78(2):431-48. PubMed ID: 9145800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thymosin β4 induces the expression of vascular endothelial growth factor (VEGF) in a hypoxia-inducible factor (HIF)-1α-dependent manner.
    Jo JO; Kim SR; Bae MK; Kang YJ; Ock MS; Kleinman HK; Cha HJ
    Biochim Biophys Acta; 2010 Nov; 1803(11):1244-51. PubMed ID: 20691219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.