These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 10339543)
21. A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Kiselev A; Socolich M; Vinós J; Hardy RW; Zuker CS; Ranganathan R Neuron; 2000 Oct; 28(1):139-52. PubMed ID: 11086990 [TBL] [Abstract][Full Text] [Related]
22. Distinct roles of arrestin 1 protein in photoreceptors during Drosophila development. Shieh BH; Kristaponyte I; Hong Y J Biol Chem; 2014 Jun; 289(26):18526-34. PubMed ID: 24838243 [TBL] [Abstract][Full Text] [Related]
23. Role of Ca2+/calmodulin-dependent protein kinase II in Drosophila photoreceptors. Lu H; Leung HT; Wang N; Pak WL; Shieh BH J Biol Chem; 2009 Apr; 284(17):11100-9. PubMed ID: 19254957 [TBL] [Abstract][Full Text] [Related]
24. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system. Robinson KA; Ou WL; Guan X; Sugamori KS; Bandyopadhyay A; Ernst OP; Mitchell J J Neurochem; 2015 Dec; 135(6):1129-39. PubMed ID: 26375013 [TBL] [Abstract][Full Text] [Related]
25. Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina. Moaven H; Koike Y; Jao CC; Gurevich VV; Langen R; Chen J Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9463-8. PubMed ID: 23690606 [TBL] [Abstract][Full Text] [Related]
26. Mutation of a TADR protein leads to rhodopsin and Gq-dependent retinal degeneration in Drosophila. Ni L; Guo P; Reddig K; Mitra M; Li HS J Neurosci; 2008 Dec; 28(50):13478-87. PubMed ID: 19074021 [TBL] [Abstract][Full Text] [Related]
27. Phosrestin I, an arrestin homolog that undergoes light-induced phosphorylation in dipteran photoreceptors. Komori N; Usukura J; Kurien B; Shichi H; Matsumoto H Insect Biochem Mol Biol; 1994 Jun; 24(6):607-17. PubMed ID: 7519097 [TBL] [Abstract][Full Text] [Related]
28. Protein Gq modulates termination of phototransduction and prevents retinal degeneration. Hu W; Wan D; Yu X; Cao J; Guo P; Li HS; Han J J Biol Chem; 2012 Apr; 287(17):13911-8. PubMed ID: 22389492 [TBL] [Abstract][Full Text] [Related]
30. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice. Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248 [TBL] [Abstract][Full Text] [Related]
31. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell. Byk T; Bar-Yaacov M; Doza YN; Minke B; Selinger Z Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1907-11. PubMed ID: 8446607 [TBL] [Abstract][Full Text] [Related]
32. Phototransduction and retinal degeneration in Drosophila. Wang T; Montell C Pflugers Arch; 2007 Aug; 454(5):821-47. PubMed ID: 17487503 [TBL] [Abstract][Full Text] [Related]
33. Phosrestin I undergoes the earliest light-induced phosphorylation by a calcium/calmodulin-dependent protein kinase in Drosophila photoreceptors. Matsumoto H; Kurien BT; Takagi Y; Kahn ES; Kinumi T; Komori N; Yamada T; Hayashi F; Isono K; Pak WL Neuron; 1994 May; 12(5):997-1010. PubMed ID: 8185954 [TBL] [Abstract][Full Text] [Related]
34. Prolonged G(q) activity triggers fly rhodopsin endocytosis and degradation, and reduces photoreceptor sensitivity. Han J; Reddig K; Li HS EMBO J; 2007 Dec; 26(24):4966-73. PubMed ID: 18034157 [TBL] [Abstract][Full Text] [Related]
35. Purification of visual arrestin from squid photoreceptors and characterization of arrestin interaction with rhodopsin and rhodopsin kinase. Swardfager W; Mitchell J J Neurochem; 2007 Apr; 101(1):223-31. PubMed ID: 17394465 [TBL] [Abstract][Full Text] [Related]
36. Odorant-specific requirements for arrestin function in Drosophila olfaction. Merrill CE; Sherertz TM; Walker WB; Zwiebel LJ J Neurobiol; 2005 Apr; 63(1):15-28. PubMed ID: 15627264 [TBL] [Abstract][Full Text] [Related]
37. Arrestin with a single amino acid substitution quenches light-activated rhodopsin in a phosphorylation-independent fashion. Gray-Keller MP; Detwiler PB; Benovic JL; Gurevich VV Biochemistry; 1997 Jun; 36(23):7058-63. PubMed ID: 9188704 [TBL] [Abstract][Full Text] [Related]
38. Visual arrestin in Limulus is phosphorylated at multiple sites in the light and in the dark. Battelle BA; Andrews AW; Kempler KE; Edwards SC; Smith WC Vis Neurosci; 2000; 17(5):813-22. PubMed ID: 11153660 [TBL] [Abstract][Full Text] [Related]
39. Conformational differences between arrestin2 and pre-activated mutants as revealed by hydrogen exchange mass spectrometry. Carter JM; Gurevich VV; Prossnitz ER; Engen JR J Mol Biol; 2005 Aug; 351(4):865-78. PubMed ID: 16045931 [TBL] [Abstract][Full Text] [Related]
40. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. Bayburt TH; Vishnivetskiy SA; McLean MA; Morizumi T; Huang CC; Tesmer JJ; Ernst OP; Sligar SG; Gurevich VV J Biol Chem; 2011 Jan; 286(2):1420-8. PubMed ID: 20966068 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]