These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 10339550)
1. A quantitative method for evaluating the stabilities of nucleic acids. Gelfand CA; Plum GE; Mielewczyk S; Remeta DP; Breslauer KJ Proc Natl Acad Sci U S A; 1999 May; 96(11):6113-8. PubMed ID: 10339550 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence energy transfer monitored competitive equilibria of nucleic acids: applications in thermodynamics and screening. Plum GE; Breslauer KJ Biopolymers; 2001-2002; 61(3):214-23. PubMed ID: 11987182 [TBL] [Abstract][Full Text] [Related]
3. Direct measurement of thermodynamic and kinetic parameters of DNA triple helix formation by fluorescence spectroscopy. Yang M; Ghosh SS; Millar DP Biochemistry; 1994 Dec; 33(51):15329-37. PubMed ID: 7803396 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285 [TBL] [Abstract][Full Text] [Related]
5. Influence of the oxidatively damaged adduct 8-oxodeoxyguanosine on the conformation, energetics, and thermodynamic stability of a DNA duplex. Plum GE; Grollman AP; Johnson F; Breslauer KJ Biochemistry; 1995 Dec; 34(49):16148-60. PubMed ID: 8519772 [TBL] [Abstract][Full Text] [Related]
6. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity. Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820 [TBL] [Abstract][Full Text] [Related]
7. The impact of an exocyclic cytosine adduct on DNA duplex properties: significant thermodynamic consequences despite modest lesion-induced structural alterations. Gelfand CA; Plum GE; Grollman AP; Johnson F; Breslauer KJ Biochemistry; 1998 Sep; 37(36):12507-12. PubMed ID: 9730823 [TBL] [Abstract][Full Text] [Related]
8. Solution conformation of the (-)-cis-anti-benzo[a]pyrenyl-dG adduct opposite dC in a DNA duplex: intercalation of the covalently attached BP ring into the helix with base displacement of the modified deoxyguanosine into the major groove. Cosman M; Hingerty BE; Luneva N; Amin S; Geacintov NE; Broyde S; Patel DJ Biochemistry; 1996 Jul; 35(30):9850-63. PubMed ID: 8703959 [TBL] [Abstract][Full Text] [Related]
9. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. Walter A; Schütz H; Simon H; Birch-Hirschfeld E J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482 [TBL] [Abstract][Full Text] [Related]
10. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Clegg RM; Murchie AI; Zechel A; Lilley DM Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2994-8. PubMed ID: 8464916 [TBL] [Abstract][Full Text] [Related]
11. The contribution of DNA single-stranded order to the thermodynamics of duplex formation. Vesnaver G; Breslauer KJ Proc Natl Acad Sci U S A; 1991 May; 88(9):3569-73. PubMed ID: 2023903 [TBL] [Abstract][Full Text] [Related]
12. Location of cyanine-3 on double-stranded DNA: importance for fluorescence resonance energy transfer studies. Norman DG; Grainger RJ; Uhrín D; Lilley DM Biochemistry; 2000 May; 39(21):6317-24. PubMed ID: 10828944 [TBL] [Abstract][Full Text] [Related]
13. Effect of base pair A/C and G/T mismatches on the thermal stabilities of DNA oligomers that form B-Z junctions. Otokiti EO; Sheardy RD Biochemistry; 1997 Sep; 36(38):11419-27. PubMed ID: 9298961 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic, kinetic, and conformational properties of a parallel intermolecular DNA triplex containing 5' and 3' junctions. Asensio JL; Dosanjh HS; Jenkins TC; Lane AN Biochemistry; 1998 Oct; 37(43):15188-98. PubMed ID: 9790683 [TBL] [Abstract][Full Text] [Related]
15. The solution structure of the four-way DNA junction at low-salt conditions: a fluorescence resonance energy transfer analysis. Clegg RM; Murchie AI; Lilley DM Biophys J; 1994 Jan; 66(1):99-109. PubMed ID: 8130350 [TBL] [Abstract][Full Text] [Related]
16. The first example of a Hoogsteen base-paired DNA duplex in dynamic equilibrium with a Watson-Crick base-paired duplex--a structural (NMR), kinetic and thermodynamic study. Isaksson J; Zamaratski E; Maltseva TV; Agback P; Kumar A; Chattopadhyaya J J Biomol Struct Dyn; 2001 Jun; 18(6):783-806. PubMed ID: 11444368 [TBL] [Abstract][Full Text] [Related]
18. Effect of thiazole orange doubly labeled thymidine on DNA duplex formation. Kimura Y; Hanami T; Tanaka Y; de Hoon MJ; Soma T; Harbers M; Lezhava A; Hayashizaki Y; Usui K Biochemistry; 2012 Aug; 51(31):6056-67. PubMed ID: 22765348 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic characterization of deoxyribooligonucleotide duplexes containing bulges. LeBlanc DA; Morden KM Biochemistry; 1991 Apr; 30(16):4042-7. PubMed ID: 2018770 [TBL] [Abstract][Full Text] [Related]
20. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer. Ozaki H; McLaughlin LW Nucleic Acids Res; 1992 Oct; 20(19):5205-14. PubMed ID: 1408835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]