These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 10340213)

  • 21. Mechanical degradation of biological heart valve tissue induced by low diameter crimping: an early assessment.
    Khoffi F; Heim F
    J Mech Behav Biomed Mater; 2015 Apr; 44():71-5. PubMed ID: 25621851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Technologies for cardiac valve prostheses].
    Nakano K
    Kyobu Geka; 2009 Jul; 62(8 Suppl):692-8. PubMed ID: 20715694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Failure and hydrodynamic function testing of explanted pericardial and porcine bioprosthetic valves.
    Fisher J; Spyt TJ; Wheatley DJ
    Proc Inst Mech Eng H; 1989; 203(2):65-70. PubMed ID: 2619837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative electron microscopic study of bovine, porcine and human parietal pericardium, as materials for cardiac valve bioprostheses.
    Fentie IH; Allen DJ; Schenck MH; Didio LJ
    J Submicrosc Cytol; 1986 Jan; 18(1):53-65. PubMed ID: 3959161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of pannus in the longevity of an Ionescu-Shiley pericardial bioprosthesis.
    Butany JW; Kesarwani R; Yau TM; Singh G; Thangaroopan M; Nair V; Leong SW
    J Card Surg; 2006; 21(5):505-7. PubMed ID: 16948773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new method for selecting calf pericardium for use in cardiac bioprostheses on the basis of morphological and mechanical criteria.
    García Páez JM; Jorge-Herrero E; Carrera A; Millán I; Rocha A; Cordón A; Salvador J; Sainz N; Méndez J; Castillo-Olivares JL
    J Mater Sci Mater Med; 2001 Aug; 12(8):665-71. PubMed ID: 15348235
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biocompatibility and calcification of bovine pericardium employed for the construction of cardiac bioprostheses treated with different chemical crosslink methods.
    Jorge-Herrero E; Fonseca C; Barge AP; Turnay J; Olmo N; Fernández P; Lizarbe MA; García Páez JM
    Artif Organs; 2010 May; 34(5):E168-76. PubMed ID: 20633147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental evaluation of an autologous tissue heart valve.
    Love JW; Schoen FJ; Breznock EM; Shermer SP; Love CS
    J Heart Valve Dis; 1992 Nov; 1(2):232-41. PubMed ID: 1341634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ionescu-Shiley bovine pericardial bioprostheses. Histologic and ultrastructural studies.
    Hilbert SL; Ferrans VJ; McAllister HA; Cooley DA
    Am J Pathol; 1992 May; 140(5):1195-204. PubMed ID: 1580331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Primary tissue failure of bioprostheses: new evidence from in vitro tests.
    Deiwick M; Glasmacher B; Pettenazzo E; Hammel D; Castellón W; Thiene G; Reul H; Berendes E; Scheld HH
    Thorac Cardiovasc Surg; 2001 Apr; 49(2):78-83. PubMed ID: 11339456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering of a polymer layered bio-hybrid heart valve scaffold.
    Jahnavi S; Kumary TV; Bhuvaneshwar GS; Natarajan TS; Verma RS
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():263-73. PubMed ID: 25842134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate.
    Rapoport HS; Connolly JM; Fulmer J; Dai N; Murti BH; Gorman RC; Gorman JH; Alferiev I; Levy RJ
    Biomaterials; 2007 Feb; 28(4):690-9. PubMed ID: 17027944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of mechanical stress in calcification of aortic bioprosthetic valves.
    Thubrikar MJ; Deck JD; Aouad J; Nolan SP
    J Thorac Cardiovasc Surg; 1983 Jul; 86(1):115-25. PubMed ID: 6865456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of in vivo models for studying calcification behavior of commercially available bovine pericardium.
    Quintero LJ; Lohre JM; Hernandez N; Meyer SC; McCarthy TJ; Lin DS; Shen SH
    J Heart Valve Dis; 1998 May; 7(3):262-7. PubMed ID: 9651837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro calcification of pericardial bioprostheses.
    Glasmacher B; Reul H; Schneppershoff S; Schreck S; Rau G
    J Heart Valve Dis; 1998 Jul; 7(4):415-8. PubMed ID: 9697064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anisotropic elasticity and strength of glutaraldehyde fixed bovine pericardium for use in pericardial bioprosthetic valves.
    Zioupos P; Barbenel JC; Fisher J
    J Biomed Mater Res; 1994 Jan; 28(1):49-57. PubMed ID: 8126028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical role of the sinuses of Valsalva in the durability of valved conduits.
    Kumar SP; Kumar MN; Ali ML; Becker A; Duran CM
    J Heart Valve Dis; 1996 Mar; 5(2):160-7. PubMed ID: 8665008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation.
    Sacks MS; Mirnajafi A; Sun W; Schmidt P
    Expert Rev Med Devices; 2006 Nov; 3(6):817-34. PubMed ID: 17280546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The telescoping suture--Part II: A novel method to improve the mechanical behavior of a new biomaterial: ostrich pericardium.
    García Páez JM; Jorge Herrero E; Rocha A; Martín-Maestro M; Castillo-Olivares JL; Millán I; Carrera Sanmartín A; Cordón A
    J Biomater Appl; 2002 Oct; 17(2):105-23. PubMed ID: 12557997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.