BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 10340398)

  • 1. Lineage switch in childhood leukemia with monosomy 7 and reverse of lineage switch in severe combined immunodeficient mice.
    Fujisaki H; Hara J; Takai K; Nakanishi K; Matsuda Y; Ohta H; Osugi Y; Tokimasa S; Taniike M; Hosoi G; Sako M; Okada S
    Exp Hematol; 1999 May; 27(5):826-33. PubMed ID: 10340398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of a monosomy 7 leukemia cell line, MONO-7, with a ras gene mutation.
    Fujisaki H; Takai K; Akihisa S; Tokimasa S; Matsuda Y; Ohta H; Osugi Y; Kim JY; Hosoi G; Sako M; Hara J
    Int J Hematol; 2002 Jan; 75(1):72-7. PubMed ID: 11843295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth factor requirements of childhood acute T-lymphoblastic leukemia: correlation between presence of chromosomal abnormalities and ability to grow permanently in vitro.
    O'Connor R; Cesano A; Lange B; Finan J; Nowell PC; Clark SC; Raimondi SC; Rovera G; Santoli D
    Blood; 1991 Apr; 77(7):1534-45. PubMed ID: 1706955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of a karyotypically normal cytotoxic leukemic T-cell line from a T-ALL sample engrafted in SCID mice.
    Cesano A; O'Connor R; Nowell PC; Lange B; Clark SC; Santoli D
    Blood; 1993 May; 81(10):2714-22. PubMed ID: 8490180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The severe combined immunodeficient (SCID) mouse as a model for human myeloid leukemias.
    Cesano A; Hoxie JA; Lange B; Nowell PC; Bishop J; Santoli D
    Oncogene; 1992 May; 7(5):827-36. PubMed ID: 1570153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth pattern and clinical correlation of subcutaneously inoculated human primary acute leukemias in severe combined immunodeficiency mice.
    Yan Y; Salomon O; McGuirk J; Dennig D; Fernandez J; Jagiello C; Nguyen H; Collins N; Steinherz P; O'Reilly RJ
    Blood; 1996 Oct; 88(8):3137-46. PubMed ID: 8874214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mature T-lineage leukemia with growth factor-induced multilineage differentiation.
    Griesinger F; Arthur DC; Brunning R; Parkin JL; Ochoa AC; Miller WJ; Wilkowski CW; Greenberg JM; Hurvitz C; Kersey JH
    J Exp Med; 1989 Mar; 169(3):1101-20. PubMed ID: 2538542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth factor-dependent differentiation along the myeloid and lymphoid lineages in an immature acute T lymphocytic leukemia.
    O'Connor R; Cesano A; Kreider BL; Lange B; Clark SC; Nowell PC; Finan J; Rovera G; Santoli D
    J Immunol; 1990 Dec; 145(11):3779-87. PubMed ID: 2246514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice.
    Bonnet D; Bhatia M; Wang JC; Kapp U; Dick JE
    Bone Marrow Transplant; 1999 Feb; 23(3):203-9. PubMed ID: 10084250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors.
    Feuring-Buske M; Gerhard B; Cashman J; Humphries RK; Eaves CJ; Hogge DE
    Leukemia; 2003 Apr; 17(4):760-3. PubMed ID: 12682634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clonal expansion of germline B-lineage acute lymphoblastic leukemia in severe combined immunodeficient mice.
    Felix CA; Wasserman R; Cesano A; Nowell PC; Hosler MR; Masterson M; Poplack DG; Santoli D
    Oncogene; 1995 Nov; 11(9):1753-9. PubMed ID: 7478603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T-cell acute lymphoblastic leukemia relapsing as acute myelogenous leukemia.
    Mantadakis E; Danilatou V; Stiakaki E; Paterakis G; Papadhimitriou S; Kalmanti M
    Pediatr Blood Cancer; 2007 Mar; 48(3):354-7. PubMed ID: 16206214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and phenotypic analysis of Philadelphia chromosome-positive bilineage leukemia: possibility of a lineage switch from T-lymphoid leukemic progenitor to myeloid cells.
    Monma F; Nishii K; Ezuki S; Miyazaki T; Yamamori S; Usui E; Sugimoto Y; Lorenzo V F; Katayama N; Shiku H
    Cancer Genet Cytogenet; 2006 Jan; 164(2):118-21. PubMed ID: 16434313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of granulocyte-macrophage colony-stimulating factor in Philadelphia (Ph1)-positive acute lymphoblastic leukemia: studies on two newly established Ph1-positive acute lymphoblastic leukemia cell lines (Z-119 and Z-181).
    Estrov Z; Talpaz M; Zipf TF; Kantarjian HM; Ku S; Ouspenskaia MV; Hirsch-Ginsberg C; Huh Y; Yee G; Kurzrock R
    J Cell Physiol; 1996 Mar; 166(3):618-30. PubMed ID: 8600166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorouracil selectively spares acute myeloid leukemia cells with long-term growth abilities in immunodeficient mice and in culture.
    Terpstra W; Ploemacher RE; Prins A; van Lom K; Pouwels K; Wognum AW; Wagemaker G; Löwenberg B; Wielenga JJ
    Blood; 1996 Sep; 88(6):1944-50. PubMed ID: 8822911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of a myeloid leukaemic cell line (SKNO-1) from a patient with t(8;21) who acquired monosomy 17 during disease progression.
    Matozaki S; Nakagawa T; Kawaguchi R; Aozaki R; Tsutsumi M; Murayama T; Koizumi T; Nishimura R; Isobe T; Chihara K
    Br J Haematol; 1995 Apr; 89(4):805-11. PubMed ID: 7772516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Granulocyte-colony stimulating factor, granulocyte-macrophage colony stimulating factor, PIXY-321, stem cell factor, interleukin-3, and interleukin-7: receptor binding and effects on clonogenic proliferation in acute lymphoblastic leukemia.
    Drach D; Estrov Z; Zhao S; Drach J; Cork A; Collins D; Kantarjian H; Andreeff M
    Leuk Lymphoma; 1994 Dec; 16(1-2):79-88. PubMed ID: 7535143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T-stem cell leukemia/lymphoma with both myeloid lineage conversion and T-specific delta recombination.
    Nagano M; Kimura N; Akiyoshi T; Nishimura J; Kozuru M; Okamura J; Katsuno M; Yoshida T; Takeshita M; Tachibana K; Ohshima K; Kikuchi M
    Leuk Res; 1997 Aug; 21(8):763-73. PubMed ID: 9379684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A granulocytic population with rearranged immunogenotype in chronic myelocytic leukemia blast crisis and Philadelphia-chromosome-positive acute leukemia with cross-lineage nature.
    Kita K; Shimizu N; Miwa H; Ikeda T; Nishii K; Morita N; Uchida T; Shirakawa S; Tsutani H; Nasu K
    Leukemia; 1993 Feb; 7(2):251-7. PubMed ID: 8381195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytokine dependent growth of human TF-1 leukemic cell line in human GM-CSF and IL-3 producing transgenic SCID mice.
    Fukuchi Y; Miyakawa Y; Kobayashi K; Kuramochi T; Shimamura K; Tamaoki N; Nomura T; Ueyama Y; Ito M
    Leuk Res; 1998 Sep; 22(9):837-43. PubMed ID: 9716016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.