These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10340633)

  • 61. Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino-acids in rat brain.
    Carlsson A; Lindqvist M
    Naunyn Schmiedebergs Arch Pharmacol; 1978 Jun; 303(2):157-64. PubMed ID: 307698
    [No Abstract]   [Full Text] [Related]  

  • 62. Effects of exposure to an estrous female on forebrain monoaminergic neurotransmission in the non-copulating male rat.
    Vega-Matuszczyk J; Hillegaart V; Larsson K; Ahlenius S
    Brain Res; 1993 Dec; 630(1-2):82-7. PubMed ID: 8118707
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release.
    McTavish SF; Cowen PJ; Sharp T
    Psychopharmacology (Berl); 1999 Jan; 141(2):182-8. PubMed ID: 9952043
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The anxiogenic drug FG-7142 increases serotonin metabolism in the rat medial prefrontal cortex.
    Evans AK; Abrams JK; Bouwknecht JA; Knight DM; Shekhar A; Lowry CA
    Pharmacol Biochem Behav; 2006 Jun; 84(2):266-74. PubMed ID: 16784772
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Catecholamine and 5-hydroxytryptamine synthesis and metabolism following intracerebroventricular injection of dibutyryl cyclic AMP.
    Debus G; Kehr W
    J Neural Transm; 1979; 45(3):195-206. PubMed ID: 225445
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Oral administration of the antiobesity drugs, sibutramine and rimonabant, increases acetylcholine efflux selectively in the medial prefrontal cortex of the rat.
    Davis RJ; Nomikos GG
    Mol Psychiatry; 2008 Mar; 13(3):240-1. PubMed ID: 18285757
    [No Abstract]   [Full Text] [Related]  

  • 67. Cerebral accumulation and metabolism of C14-dopa after selective inhibition of peripheral decarboxylase.
    Bartholini G; Pletscher A
    J Pharmacol Exp Ther; 1968 May; 161(1):14-20. PubMed ID: 5648492
    [No Abstract]   [Full Text] [Related]  

  • 68. Catechol- and indolamines in some endocrine cell systems. An autoradiographical, histochemical and radioimmunological study.
    Tjälve H
    Acta Physiol Scand Suppl; 1971; 360():1-122. PubMed ID: 4933514
    [No Abstract]   [Full Text] [Related]  

  • 69. [Ultrastructural autoradiography of the metabolism of biogenic amines in the gastrointestinal tract and in other organs].
    Forssmann WG; Wacker P; Daldrup J
    Verh Anat Ges; 1971; 65():19-29. PubMed ID: 5317021
    [No Abstract]   [Full Text] [Related]  

  • 70. Effect of the duration of streptozotocin-induced diabetes on turnover of central biogenic amines in mice.
    Chen CC
    Neuroendocrinology; 1992 Nov; 56(5):629-32. PubMed ID: 1488094
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of neurotensin dipeptide analog dilept on dopamine metabolism and synthesis in the nucleus accumbens of Wistar rats.
    Shubenina EV; Kudrin VS; Klodt PM; Narkevich VB; Kuznetsova EA; Gudasheva TA; Ostrovskaya RU
    Bull Exp Biol Med; 2012 Sep; 153(5):694-6. PubMed ID: 23113260
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reduced brain monoamine synthesis by systemic treatment with terbutaline, a beta 2-receptor agonist.
    Hallberg H; Almgren O; Svensson TH
    J Neural Transm; 1980; 48(3):167-75. PubMed ID: 6772741
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Differential time course activation of the brain stem catecholaminergic groups following chronic adrenalectomy.
    Lachuer J; Buda M; Tappaz M
    Neuroendocrinology; 1992 Aug; 56(2):125-32. PubMed ID: 1328913
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Time-related effects of stress on cholinergic sensitivity.
    Pullia D; D'Amato FR; Mele A; Oliverio A; Zocchi A; Pavone F
    Brain Res; 1996 Dec; 743(1-2):333-6. PubMed ID: 9017264
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Neurotensin inhibits the activation of midbrain serotonergic neurons produced by random inescapable sound.
    Dilts RP; Novitzki MR; Phan TH; Corley KC; Boadle-Biber MC
    Brain Res; 1996 Dec; 742(1-2):294-8. PubMed ID: 9117407
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of gonadectomy and hormone replacement on brain monoamine synthesis in male rats.
    Engel J; Ahlenius S; Almgren O; Carlsson A; Larsson K; Södersten P
    Pharmacol Biochem Behav; 1979 Jan; 10(1):149-54. PubMed ID: 35791
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Brain nitric oxide: regional characterisation of a real-time microelectrochemical sensor.
    Finnerty NJ; O'Riordan SL; Palsson E; Lowry JP
    J Neurosci Methods; 2012 Jul; 209(1):13-21. PubMed ID: 22659002
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Relative penetration of L-dopa and 5-HTP through the brain barrier using dimethyl sulfoxide.
    De la Torre JC
    Experientia; 1970 Oct; 26(10):1117-8. PubMed ID: 5312418
    [No Abstract]   [Full Text] [Related]  

  • 79. Simultaneous measurement of 5-hydroxytryptophan and L-dihydroxyphenylalanine by high-performance liquid chromatography with electrochemical detection. Measurement of serotonin and catecholamine turnover in discrete brain regions.
    Shum A; Sole MJ; Van Loon GR
    J Chromatogr; 1982 Mar; 228():123-30. PubMed ID: 6978886
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Kinetics of the reaction of DOPA decarboxylase with 5-hydroxy-L-tryptophan.
    Salerno C; Borri Voltattorni C; Giartosio A; Fiori A; Turano C
    Prog Clin Biol Res; 1984; 144A():277-87. PubMed ID: 6610180
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.