BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10341067)

  • 1. Salt Marsh Diking and Restoration: Biogeochemical Implications of Altered Wetland Hydrology.
    Portnoy JW
    Environ Manage; 1999 Jul; 24(1):111-120. PubMed ID: 10341067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh.
    Charles H; Dukes JS
    Ecol Appl; 2009 Oct; 19(7):1758-73. PubMed ID: 19831068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water salinity and inundation control soil carbon decomposition during salt marsh restoration: An incubation experiment.
    Wang F; Kroeger KD; Gonneea ME; Pohlman JW; Tang J
    Ecol Evol; 2019 Feb; 9(4):1911-1921. PubMed ID: 30847081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vegetation zones as indicators of denitrification potential in salt marshes.
    Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM
    Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Groundwater controls ecological zonation of salt marsh macrophytes.
    Wilson AM; Evans T; Moore W; Schutte CA; Joye SB; Hughes AH; Anderson JL
    Ecology; 2015 Mar; 96(3):840-9. PubMed ID: 26236879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The core root microbiome of Spartina alterniflora is predominated by sulfur-oxidizing and sulfate-reducing bacteria in Georgia salt marshes, USA.
    Rolando JL; Kolton M; Song T; Kostka JE
    Microbiome; 2022 Mar; 10(1):37. PubMed ID: 35227326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant biomass and rates of carbon dioxide uptake are enhanced by successful restoration of tidal connectivity in salt marshes.
    Wang F; Eagle M; Kroeger KD; Spivak AC; Tang J
    Sci Total Environ; 2021 Jan; 750():141566. PubMed ID: 32882493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lacunal allocation and gas transport capacity in the salt marsh grass Spartina alterniflora.
    Arenovski AL; Howes BL
    Oecologia; 1992 Jun; 90(3):316-322. PubMed ID: 28313517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure.
    Wigand C; Roman CT; Davey E; Stolt M; Johnson R; Hanson A; Watson EB; Moran SB; Cahoon DR; Lynch JC; Rafferty P
    Ecol Appl; 2014 Jun; 24(4):633-49. PubMed ID: 24988765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denitrification Capacity of a Natural and a Restored Marsh in the Northern Gulf of Mexico.
    Kleinhuizen AA; Mortazavi B
    Environ Manage; 2018 Sep; 62(3):584-594. PubMed ID: 29736768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?
    McKee KL; Vervaeke WC
    Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing tidal inundation corresponds to rising porewater nutrient concentrations in a southeastern U.S. salt marsh.
    Krask JL; Buck TL; Dunn RP; Smith EM
    PLoS One; 2022; 17(11):e0278215. PubMed ID: 36441803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation of Soil Water Movement and Sulfide Concentration to Spartina alterniflora Production in a Georgia Salt Marsh.
    King GM; Klug MJ; Wiegert RG; Chalmers AG
    Science; 1982 Oct; 218(4567):61-3. PubMed ID: 17776710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen fixation and nitrogen limitation of primary production along a natural marsh chronosequence.
    Tyler AC; Mastronicola TA; McGlathery KJ
    Oecologia; 2003 Aug; 136(3):431-8. PubMed ID: 12750992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate mediates consumer control of salt marsh cordgrass on Cape Cod, New England.
    Bertness MD; Holdredge C; Altieri AH
    Ecology; 2009 Aug; 90(8):2108-17. PubMed ID: 19739373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porewater salinity in a southeastern United States salt marsh: controls and interannual variation.
    Miklesh D; Meile C
    PeerJ; 2018; 6():e5911. PubMed ID: 30425895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution and biogeochemical controls on net methylmercury production in Penobscot River marshes and sediment.
    Gilmour C; Bell JT; Soren AB; Riedel G; Riedel G; Kopec AD; Bodaly RA
    Sci Total Environ; 2018 Nov; 640-641():555-569. PubMed ID: 29864668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tidal creek and salt marsh sediments in South Carolina coastal estuaries: II. Distribution of organic contaminants.
    Sanger DM; Holland AF; Scott GI
    Arch Environ Contam Toxicol; 1999 Nov; 37(4):458-71. PubMed ID: 10508893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tidal marsh restoration enhances sediment accretion and carbon accumulation in the Stillaguamish River estuary, Washington.
    Poppe KL; Rybczyk JM
    PLoS One; 2021; 16(9):e0257244. PubMed ID: 34506575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.