BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10341077)

  • 1. Primary structure of the DNA polymerase I gene of an alpha-proteobacterium, Rhizobium leguminosarum, and comparison with other family A DNA polymerases.
    Huang YP; Downie JA; Ito J
    Curr Microbiol; 1999 Jun; 38(6):355-9. PubMed ID: 10341077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase.
    Villbrandt B; Sobek H; Frey B; Schomburg D
    Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of the 3'-5' exonuclease activity of Taq DNA polymerase by protein engineering in the active site.
    Park Y; Choi H; Lee DS; Kim Y
    Mol Cells; 1997 Jun; 7(3):419-24. PubMed ID: 9264032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and analysis of the DNA polymerase-encoding gene from Thermus caldophilus GK24.
    Kwon ST; Kim JS; Park JH; Kim HK; Lee DS
    Mol Cells; 1997 Apr; 7(2):264-71. PubMed ID: 9163743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Family A and family B DNA polymerases are structurally related: evolutionary implications.
    Zhu W; Ito J
    Nucleic Acids Res; 1994 Dec; 22(24):5177-83. PubMed ID: 7816603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HupK, a hydrogenase-ancillary protein from Rhizobium leguminosarum, shares structural motifs with the large subunit of NiFe hydrogenases and could be a scaffolding protein for hydrogenase metal cofactor assembly.
    Imperial J; Rey L; Palacios JM; Ruiz-Argüeso T
    Mol Microbiol; 1993 Sep; 9(6):1305-6. PubMed ID: 7934943
    [No Abstract]   [Full Text] [Related]  

  • 7. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
    Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH
    Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of a DNA polymerase I (polA) mutant of Rhizobium leguminosarum that has significantly reduced levels of an IncQ-group plasmid.
    Crank SF; Downie JA
    Mol Gen Genet; 1994 Apr; 243(1):119-23. PubMed ID: 8190065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of Thermus aquaticus DNA polymerase.
    Kim Y; Eom SH; Wang J; Lee DS; Suh SW; Steitz TA
    Nature; 1995 Aug; 376(6541):612-6. PubMed ID: 7637814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An attempt to unify the structure of polymerases.
    Delarue M; Poch O; Tordo N; Moras D; Argos P
    Protein Eng; 1990 May; 3(6):461-7. PubMed ID: 2196557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides.
    Tabor S; Richardson CC
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6339-43. PubMed ID: 7603992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular diversity and catalytic activity of Thermus DNA polymerases.
    Gibbs MD; Reeves RA; Mandelman D; Mi Q; Lee J; Bergquist PL
    Extremophiles; 2009 Sep; 13(5):817-26. PubMed ID: 19597696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide sequence of the Rickettsia prowazekii citrate synthase gene.
    Wood DO; Williamson LR; Winkler HH; Krause DC
    J Bacteriol; 1987 Aug; 169(8):3564-72. PubMed ID: 3112124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and characterization of ce/8A gene from Rhizobium leguminosarum bv. trifolii 1536.
    An JM; Lim WJ; Hong SY; Shin EC; Kim EJ; Kim YK; Park SR; Yun HD
    Lett Appl Microbiol; 2004; 38(4):296-300. PubMed ID: 15214728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerase active site is highly mutable: evolutionary consequences.
    Patel PH; Loeb LA
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5095-100. PubMed ID: 10805772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of the gene coding for the major sigma factor of Rickettsia prowazekii DNA-dependent RNA polymerase.
    Marks GL; Winkler HH; Wood DO
    Gene; 1992 Nov; 121(1):155-60. PubMed ID: 1427089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of soil bacteria expressing a symbiotic plasmid from Rhizobium leguminosarum bv. trofolii.
    Sivakumaran S; Lockhart PJ; Jarvis BD
    Can J Microbiol; 1997 Feb; 43(2):164-77. PubMed ID: 9090106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains.
    Moser MJ; Holley WR; Chatterjee A; Mian IS
    Nucleic Acids Res; 1997 Dec; 25(24):5110-8. PubMed ID: 9396823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoesterase domains associated with DNA polymerases of diverse origins.
    Aravind L; Koonin EV
    Nucleic Acids Res; 1998 Aug; 26(16):3746-52. PubMed ID: 9685491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhizobium leguminosarum contains multiple chaperonin (cpn60) genes.
    Wallington EJ; Lund PA
    Microbiology (Reading); 1994 Jan; 140 ( Pt 1)():113-22. PubMed ID: 7909257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.