BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 10341239)

  • 1. Neuroprotection at Drosophila synapses conferred by prior heat shock.
    Karunanithi S; Barclay JW; Robertson RM; Brown IR; Atwood HL
    J Neurosci; 1999 Jun; 19(11):4360-9. PubMed ID: 10341239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of presynaptic performance in transgenic Drosophila overexpressing heat shock protein Hsp70.
    Karunanithi S; Barclay JW; Brown IR; Robertson RM; Atwood HL
    Synapse; 2002 Apr; 44(1):8-14. PubMed ID: 11842441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role for calcium in heat shock-mediated synaptic thermoprotection in Drosophila larvae.
    Barclay JW; Robertson RM
    J Neurobiol; 2003 Sep; 56(4):360-71. PubMed ID: 12918020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic thermoprotection in a desert-dwelling Drosophila species.
    Newman AE; Xiao C; Robertson RM
    J Neurobiol; 2005 Aug; 64(2):170-80. PubMed ID: 15818554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1.
    Neal SJ; Karunanithi S; Best A; So AK; Tanguay RM; Atwood HL; Westwood JT
    Physiol Genomics; 2006 May; 25(3):493-501. PubMed ID: 16595740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat shock-mediated thermoprotection of larval locomotion compromised by ubiquitous overexpression of Hsp70 in Drosophila melanogaster.
    Klose MK; Chu D; Xiao C; Seroude L; Robertson RM
    J Neurophysiol; 2005 Nov; 94(5):3563-72. PubMed ID: 16093328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of heat shock proteins, Hsp70 and Hsp64, in heat-shocked Malpighian tubules of Drosophila melanogaster larvae.
    Lakhotia SC; Srivastava P; Prasanth KV
    Cell Stress Chaperones; 2002 Oct; 7(4):347-56. PubMed ID: 12653479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focal Macropatch Recordings of Synaptic Currents from the Drosophila Larval Neuromuscular Junction.
    Vasin A; Bykhovskaia M
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantal unit populations at the Drosophila larval neuromuscular junction.
    Wong K; Karunanithi S; Atwood HL
    J Neurophysiol; 1999 Sep; 82(3):1497-511. PubMed ID: 10482765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction.
    Dawson-Scully K; Lin Y; Imad M; Zhang J; Marin L; Horne JA; Meinertzhagen IA; Karunanithi S; Zinsmaier KE; Atwood HL
    Synapse; 2007 Jan; 61(1):1-16. PubMed ID: 17068777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amplitude of quantal currents is reduced during short-term depression at neuromuscular synapses in Drosophila.
    Adelsberger H; Heckmann M; Dudel J
    Neurosci Lett; 1997 Mar; 225(1):5-8. PubMed ID: 9143004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-specific targeting of Hsp26 has no effect on heat resistance of neural function in larval Drosophila.
    Mileva-Seitz V; Xiao C; Seroude L; Robertson RM
    Cell Stress Chaperones; 2008; 13(1):85-95. PubMed ID: 18347945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting HSP70 to motoneurons protects locomotor activity from hyperthermia in Drosophila.
    Xiao C; Mileva-Seitz V; Seroude L; Robertson RM
    Dev Neurobiol; 2007 Mar; 67(4):438-55. PubMed ID: 17443800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cGMP-Dependent Protein Kinase Inhibition Extends the Upper Temperature Limit of Stimulus-Evoked Calcium Responses in Motoneuronal Boutons of Drosophila melanogaster Larvae.
    Krill JL; Dawson-Scully K
    PLoS One; 2016; 11(10):e0164114. PubMed ID: 27711243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evoked quantal currents at neuromuscular junctions of wild type Drosophila larvae.
    Heckmann M; Dudel J
    Neurosci Lett; 1998 Nov; 256(2):77-80. PubMed ID: 9853707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depression of synaptic efficacy in high- and low-output Drosophila neuromuscular junctions by the molting hormone (20-HE).
    Ruffner ME; Cromarty SI; Cooper RL
    J Neurophysiol; 1999 Feb; 81(2):788-94. PubMed ID: 10036278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate receptors in synaptic assembly and plasticity: case studies on fly NMJs.
    Thomas U; Sigrist SJ
    Adv Exp Med Biol; 2012; 970():3-28. PubMed ID: 22351049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpretation of 'quantal' peaks in distributions of evoked synaptic transmission at central synapses.
    Walmsley B
    Proc Biol Sci; 1995 Aug; 261(1361):245-50. PubMed ID: 7568277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperthermic preconditioning of presynaptic calcium regulation in Drosophila.
    Klose MK; Atwood HL; Robertson RM
    J Neurophysiol; 2008 May; 99(5):2420-30. PubMed ID: 18272873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock protects synaptic transmission in flight motor circuitry of locusts.
    Dawson-Scully K; Meldrum Robertson R
    Neuroreport; 1998 Aug; 9(11):2589-93. PubMed ID: 9721938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.