These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
538 related articles for article (PubMed ID: 10341241)
1. Anatomical correlates of functional plasticity in mouse visual cortex. Antonini A; Fagiolini M; Stryker MP J Neurosci; 1999 Jun; 19(11):4388-406. PubMed ID: 10341241 [TBL] [Abstract][Full Text] [Related]
2. Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat. Antonini A; Stryker MP J Comp Neurol; 1996 May; 369(1):64-82. PubMed ID: 8723703 [TBL] [Abstract][Full Text] [Related]
3. Morphology of single geniculocortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten. Antonini A; Gillespie DC; Crair MC; Stryker MP J Neurosci; 1998 Dec; 18(23):9896-909. PubMed ID: 9822746 [TBL] [Abstract][Full Text] [Related]
6. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse. Cang J; Kalatsky VA; Löwel S; Stryker MP Vis Neurosci; 2005; 22(5):685-91. PubMed ID: 16332279 [TBL] [Abstract][Full Text] [Related]
7. Synaptic density in geniculocortical afferents remains constant after monocular deprivation in the cat. Silver MA; Stryker MP J Neurosci; 1999 Dec; 19(24):10829-42. PubMed ID: 10594065 [TBL] [Abstract][Full Text] [Related]
8. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex. Mower GD; Caplan CJ; Christen WG; Duffy FH J Comp Neurol; 1985 May; 235(4):448-66. PubMed ID: 3998219 [TBL] [Abstract][Full Text] [Related]
9. Morphological changes in the geniculocortical pathway associated with monocular deprivation. Tieman SB Ann N Y Acad Sci; 1991; 627():212-30. PubMed ID: 1679310 [TBL] [Abstract][Full Text] [Related]
10. Distinctive features of adult ocular dominance plasticity. Sato M; Stryker MP J Neurosci; 2008 Oct; 28(41):10278-86. PubMed ID: 18842887 [TBL] [Abstract][Full Text] [Related]
11. Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex. Tohmi M; Kitaura H; Komagata S; Kudoh M; Shibuki K J Neurosci; 2006 Nov; 26(45):11775-85. PubMed ID: 17093098 [TBL] [Abstract][Full Text] [Related]
12. Recovery from monocular deprivation in the monkey. III. Reversal of anatomical effects in the visual cortex. Swindale NV; Vital-Durand F; Blakemore C Proc R Soc Lond B Biol Sci; 1981 Nov; 213(1193):435-50. PubMed ID: 6119690 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of vision by monocular deprivation in adult mice. Prusky GT; Alam NM; Douglas RM J Neurosci; 2006 Nov; 26(45):11554-61. PubMed ID: 17093076 [TBL] [Abstract][Full Text] [Related]
14. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex. Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940 [TBL] [Abstract][Full Text] [Related]
15. Functional architecture of area 17 in normal and monocularly deprived marmosets (Callithrix jacchus). Sengpiel F; Troilo D; Kind PC; Graham B; Blakemore C Vis Neurosci; 1996; 13(1):145-60. PubMed ID: 8730996 [TBL] [Abstract][Full Text] [Related]
16. Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. Trachtenberg JT; Trepel C; Stryker MP Science; 2000 Mar; 287(5460):2029-32. PubMed ID: 10720332 [TBL] [Abstract][Full Text] [Related]
17. Effects of monocular deprivation and reverse suture on orientation maps can be explained by activity-instructed development of geniculocortical connections. Miller KD; Erwin E Vis Neurosci; 2001; 18(5):821-34. PubMed ID: 11925017 [TBL] [Abstract][Full Text] [Related]
18. Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. Horton JC; Hocking DR J Neurosci; 1998 Jul; 18(14):5433-55. PubMed ID: 9651225 [TBL] [Abstract][Full Text] [Related]
19. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats. Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270 [TBL] [Abstract][Full Text] [Related]
20. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]