These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 10341241)

  • 21. Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2012 Jan; 202():17-28. PubMed ID: 22178607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ipsilateral eye cortical maps are uniquely sensitive to binocular plasticity.
    Faguet J; Maranhao B; Smith SL; Trachtenberg JT
    J Neurophysiol; 2009 Feb; 101(2):855-61. PubMed ID: 19052109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity.
    Liao DS; Krahe TE; Prusky GT; Medina AE; Ramoa AS
    J Neurophysiol; 2004 Oct; 92(4):2113-21. PubMed ID: 15102897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prior experience enhances plasticity in adult visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Nat Neurosci; 2006 Jan; 9(1):127-32. PubMed ID: 16327785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporary monocular occlusion facilitates binocular fusion during rivalry.
    Sheynin Y; Proulx S; Hess RF
    J Vis; 2019 May; 19(5):23. PubMed ID: 31136647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice.
    Jaepel J; Hübener M; Bonhoeffer T; Rose T
    Nat Neurosci; 2017 Dec; 20(12):1708-1714. PubMed ID: 29184207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lifelong learning: ocular dominance plasticity in mouse visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Curr Opin Neurobiol; 2006 Aug; 16(4):451-9. PubMed ID: 16837188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). I. Visual cortex.
    Berardi N; Domenici L; Parisi V; Pizzorusso T; Cellerino A; Maffei L
    Proc Biol Sci; 1993 Jan; 251(1330):17-23. PubMed ID: 8094561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasticity of an aberrant geniculocortical pathway in neonatally lesioned cats.
    Kato N; Price DJ; Ferrer JM; Blakemore C
    Neuroreport; 1993 Jul; 4(7):915-8. PubMed ID: 8396462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME; Pham TA; Gordon B
    Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex.
    Sun YJ; Espinosa JS; Hoseini MS; Stryker MP
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21812-21820. PubMed ID: 31591211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in the distribution of geniculocortical projections following monocular deprivation in tree shrews.
    Florence SL; Casagrande VA
    Brain Res; 1986 May; 374(1):179-84. PubMed ID: 3719325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex.
    Horton JC; Hocking DR
    J Neurosci; 1997 May; 17(10):3684-709. PubMed ID: 9133391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical period of experience-driven axon retraction in the pharmacologically inhibited visual cortex.
    Morishima Y; Toigawa M; Ohmura N; Yoneda T; Tagane Y; Hata Y
    Cereb Cortex; 2013 Oct; 23(10):2423-8. PubMed ID: 22875858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Susceptibility to monocular deprivation following immersion in darkness either late into or beyond the critical period.
    Duffy KR; Lingley AJ; Holman KD; Mitchell DE
    J Comp Neurol; 2016 Sep; 524(13):2643-53. PubMed ID: 26878686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Maffei L; Berardi N; Domenici L; Parisi V; Pizzorusso T
    J Neurosci; 1992 Dec; 12(12):4651-62. PubMed ID: 1334503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adult visual experience promotes recovery of primary visual cortex from long-term monocular deprivation.
    Fischer QS; Aleem S; Zhou H; Pham TA
    Learn Mem; 2007 Sep; 14(9):573-80. PubMed ID: 17761542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience.
    Salinas KJ; Huh CYL; Zeitoun JH; Gandhi SP
    J Neurosci; 2021 Feb; 41(7):1470-1488. PubMed ID: 33376158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short-term monocular patching boosts the patched eye's response in visual cortex.
    Zhou J; Baker DH; Simard M; Saint-Amour D; Hess RF
    Restor Neurol Neurosci; 2015; 33(3):381-7. PubMed ID: 26410580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.