These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10341301)

  • 1. Influence of water on the supercritical fluid extraction of naphthalene from soil.
    Smyth TJ; Zytner RG; Stiver WH
    J Hazard Mater; 1999 Jun; 67(2):183-96. PubMed ID: 10341301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic and kinetic models for the extraction of essential oil from savory and polycyclic aromatic hydrocarbons from soil with hot (subcritical) water and supercritical CO2.
    Kubátová A; Jansen B; Vaudoisot JF; Hawthorne SB
    J Chromatogr A; 2002 Oct; 975(1):175-88. PubMed ID: 12458758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a carbamate-conjugated catechol ligand and its application to Cs extraction from contaminated soil by using supercritical CO
    Park K; Kim T; Park J; Yan X; Kim H
    Chemosphere; 2020 Mar; 242():125210. PubMed ID: 31689638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the extraction of soil contaminants with supercritical carbon dioxide.
    Baig MN; Leeke GA; Hammond PJ; Santos RC
    Environ Pollut; 2011 Jul; 159(7):1802-9. PubMed ID: 21511375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PAH release during water desorption, supercritical carbon dioxide extraction, and field bioremediation.
    Hawthorne SB; Poppendieck DG; Grabanski CB; Loehr RC
    Environ Sci Technol; 2001 Nov; 35(22):4577-83. PubMed ID: 11757619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of naphthalene derivatives to soils from a long-term field experiment.
    Novoszad M; Gerzabek MH; Haberhauer G; Jakusch M; Lischka H; Tunega D; Kirchmann H
    Chemosphere; 2005 Apr; 59(5):639-47. PubMed ID: 15792661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal extraction from the artificially contaminated soil using supercritical CO2 with mixed ligands.
    Park K; Lee J; Sung J
    Chemosphere; 2013 Apr; 91(5):616-22. PubMed ID: 23347618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of naphthalene biodegradation on the adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil.
    Hwang G; Park SR; Lee CH; Ahn IS; Yoon YJ; Mhin BJ
    J Hazard Mater; 2009 Dec; 172(1):491-3. PubMed ID: 19656625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercritical carbon dioxide extraction.
    Hawthorne SB; Poppendieck DG; Grabanski CB; Loehr RC
    Environ Sci Technol; 2002 Nov; 36(22):4795-803. PubMed ID: 12487302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The prediction of PAHs bioavailability in soils using chemical methods: state of the art and future challenges.
    Cachada A; Pereira R; da Silva EF; Duarte AC
    Sci Total Environ; 2014 Feb; 472():463-80. PubMed ID: 24300458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between supercritical carbon dioxide extraction and aqueous surfactant washing of an oily machining waste.
    Fu H; Matthews MA
    J Hazard Mater; 1999 Jun; 67(2):197-213. PubMed ID: 10341302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate.
    Yan DY; Lo IM
    Environ Pollut; 2013 Jul; 178():15-22. PubMed ID: 23523688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-aided characterization of Tenax-TA for aromatic compound uptake from water.
    Zhao D; Pignatello JJ
    Environ Toxicol Chem; 2004 Jul; 23(7):1592-9. PubMed ID: 15230310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the characteristics of soil and fly ash on the supercritical carbon dioxide extraction of dioxins.
    Kawashima A; Miyawaki T; Honda K
    Anal Sci; 2006 Nov; 22(11):1393-7. PubMed ID: 17099268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical-fluid extraction as a method for investigating the fate of the organic contaminants in soil.
    Setti L; Morselli L
    Ann Chim; 2001; 91(7-8):503-15. PubMed ID: 11554188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of polychlorinated biphenyl with supercritical carbon dioxide, sulfur hexafluoride and subcritical water.
    Pross S; Gau W; Wenclawiak BW
    Fresenius J Anal Chem; 2000 May; 367(1):89-90. PubMed ID: 11227442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The equilibria of bisolute sorption on soil.
    Xiao B; Huang W
    Chemosphere; 2011 May; 83(7):1005-13. PubMed ID: 21377187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the efficiency of supercritical fluid extraction for the decontamination of archaeological bones prior to radiocarbon dating.
    Devièse T; Ribechini E; Querci D; Higham T
    Analyst; 2019 Oct; 144(20):6128-6135. PubMed ID: 31535118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability evaluation of naphthalene in soil using persulfate oxidation and ultrasonic extraction method.
    Hung JM; Liu HC; Hwu CS; Chih-Hsing ; Lai TH; Lu CJ
    J Environ Biol; 2011 May; 32(3):277-82. PubMed ID: 22167937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Adsorption of toluene and naphthalene on Beijing soils and its influence factor].
    Zhang JH; Zeng JH
    Huan Jing Ke Xue; 2006 Sep; 27(9):1889-94. PubMed ID: 17117651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.