These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 10341435)

  • 1. Optimization of pyrene oxidation by Penicillium janthinellum using response-surface methodology.
    Launen LA; Pinto LJ; Moore MM
    Appl Microbiol Biotechnol; 1999 Apr; 51(4):510-5. PubMed ID: 10341435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrene is metabolized to bound residues by Penicillium janthinellum SFU403.
    Launen LA; Pinto LJ; Percival PW; Lam SF; Moore MM
    Biodegradation; 2000; 11(5):305-12. PubMed ID: 11487060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of pyrene by indigenous fungi from a former gasworks site.
    Saraswathy A; Hallberg R
    FEMS Microbiol Lett; 2002 May; 210(2):227-32. PubMed ID: 12044679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidation of pyrene and benzo[a]pyrene by nonbasidiomycete soil fungi.
    Launen L; Pinto L; Wiebe C; Kiehlmann E; Moore M
    Can J Microbiol; 1995 Jun; 41(6):477-88. PubMed ID: 7627908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrene degradation by marine-derived ascomycete: process optimization, toxicity, and metabolic analyses.
    Vasconcelos MRS; Vieira GAL; Otero IVR; Bonugli-Santos RC; Rodrigues MVN; Rehder VLG; Ferro M; Boaventura S; Bacci M; Sette LD
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):12412-12424. PubMed ID: 30847811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of pyrene by sediment fungi.
    Ravelet C; Krivobok S; Sage L; Steiman R
    Chemosphere; 2000 Mar; 40(5):557-63. PubMed ID: 10665394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene.
    Saraswathy A; Hallberg R
    Microbiol Res; 2005; 160(4):375-83. PubMed ID: 16255142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrene degradation by yeasts and filamentous fungi.
    Romero MC; Salvioli ML; Cazau MC; Arambarri AM
    Environ Pollut; 2002; 117(1):159-63. PubMed ID: 11843531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of n-C10:0 and n-C11:0 fatty acids by Trichoderma koningii, Penicillium janthinellum and their mixed culture: I. Biomass and CO2 production, and allocation of intracellular lipids.
    Chahal A; Monreal CM; Bissett J; Rowland O; Smith ML; Shea Miller S
    J Environ Sci Health B; 2014; 49(12):945-54. PubMed ID: 25310810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: optimization of the degradation process.
    Vieira GAL; Magrini MJ; Bonugli-Santos RC; Rodrigues MVN; Sette LD
    Braz J Microbiol; 2018; 49(4):749-756. PubMed ID: 29805073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein engineering of cytochrome p450(cam) (CYP101) for the oxidation of polycyclic aromatic hydrocarbons.
    Harford-Cross CF; Carmichael AB; Allan FK; England PA; Rouch DA; Wong LL
    Protein Eng; 2000 Feb; 13(2):121-8. PubMed ID: 10708651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P450 2A13.
    Shimada T; Takenaka S; Murayama N; Kramlinger VM; Kim JH; Kim D; Liu J; Foroozesh MK; Yamazaki H; Guengerich FP; Komori M
    Xenobiotica; 2016; 46(3):211-24. PubMed ID: 26247835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products.
    Heitkamp MA; Freeman JP; Miller DW; Cerniglia CE
    Appl Environ Microbiol; 1988 Oct; 54(10):2556-65. PubMed ID: 3202634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of pyrene by Candida sp. S1 under high salinity conditions.
    Hadibarata T; Khudhair AB; Kristanti RA; Kamyab H
    Bioprocess Biosyst Eng; 2017 Sep; 40(9):1411-1418. PubMed ID: 28612166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrene degradation by two fungi in a freshwater sediment and evaluation of fungal biomass by ergosterol content.
    Ravelet C; Grosset C; Krivobok S; Montuelle B; Alary J
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):803-8. PubMed ID: 11601633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1-Methoxypyrene and 1,6-dimethoxypyrene: two novel metabolites in fungal metabolism of polycyclic aromatic hydrocarbons.
    Wunder T; Marr J; Kremer S; Sterner O; Anke H
    Arch Microbiol; 1997 May; 167(5):310-6. PubMed ID: 9094229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of culture conditions for penicilazaphilone C production by a marine-derived fungus Penicillium sclerotiorum M-22.
    Zhao HG; Wang M; Lin YY; Zhou SL
    Lett Appl Microbiol; 2018 Mar; 66(3):222-230. PubMed ID: 29285768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient and biological monitoring of exposure to polycyclic aromatic hydrocarbons at a coking plant.
    Pyy L; Mäkelä M; Hakala E; Kakko K; Lapinlampi T; Lisko A; Yrjänheikki E; Vähäkangas K
    Sci Total Environ; 1997 Jun; 199(1-2):151-8. PubMed ID: 9200858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-induction of pyrene and phenanthrene in a Mycobacterium sp. isolated from polycyclic aromatic hydrocarbon contaminated river sediments.
    Molina M; Araujo R; Hodson RE
    Can J Microbiol; 1999 Jun; 45(6):520-9. PubMed ID: 10453479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous biodegradation of creosote-polycyclic aromatic hydrocarbons by a pyrene-degrading Mycobacterium.
    López Z; Vila J; Ortega-Calvo JJ; Grifoll M
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):165-72. PubMed ID: 18074131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.