BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 10341996)

  • 1. The role of arterial and venous pressure for volume regulation of an organ enclosed in a rigid compartment with application to the injured brain.
    Kongstad L; Grände PO
    Acta Anaesthesiol Scand; 1999 May; 43(5):501-8. PubMed ID: 10341996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local vascular response during organ elevation. A model for cerebral effects of upright position and dural puncture.
    Kongstad L; Grände PO
    Acta Anaesthesiol Scand; 1999 Apr; 43(4):438-46. PubMed ID: 10225078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of arterial and venous pressure alterations on transcapillary fluid exchange during raised tissue pressure.
    Asgeirsson B; Grände PO
    Intensive Care Med; 1994 Nov; 20(8):567-72. PubMed ID: 7706569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The capillary filtration coefficient for evaluation of capillary fluid permeability in cat calf muscles.
    Kongstad L; Grände PO
    Acta Physiol Scand; 1998 Oct; 164(2):201-11. PubMed ID: 9805107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local vascular responses to elevation of an organ above the heart.
    Asgeirsson B; Grände PO
    Acta Physiol Scand; 1996 Jan; 156(1):9-18. PubMed ID: 8866881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoregulation of cerebral blood flow after experimental fluid percussion injury of the brain.
    Lewelt W; Jenkins LW; Miller JD
    J Neurosurg; 1980 Oct; 53(4):500-11. PubMed ID: 7420172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship of pulsatile cerebrospinal fluid flow to cerebral blood flow and intracranial pressure: a new theoretical model.
    Bergsneider M; Alwan AA; Falkson L; Rubinstein EH
    Acta Neurochir Suppl; 1998; 71():266-8. PubMed ID: 9779203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of airway pressure changes on intracranial pressure (ICP) and the blood flow velocity in the middle cerebral artery (VMCA).
    Ludwig HC; Klingler M; Timmermann A; Weyland W; Mursch K; Reparon C; Markakis E
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2000 Mar; 35(3):141-5. PubMed ID: 10768051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebrovascular response to changes of cerebral venous pressure and cerebrospinal fluid pressure.
    Kato Y; Mokry M; Pucher R; Auer LM
    Acta Neurochir (Wien); 1991; 109(1-2):52-6. PubMed ID: 2068968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model.
    Ursino M; Lodi CA
    Am J Physiol; 1998 May; 274(5):H1715-28. PubMed ID: 9612384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of cerebral venous and intracranial pressures.
    Nemoto EM
    Acta Neurochir Suppl; 2006; 96():435-7. PubMed ID: 16671500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A whole-body mathematical model for intracranial pressure dynamics.
    Lakin WD; Stevens SA; Tranmer BI; Penar PL
    J Math Biol; 2003 Apr; 46(4):347-83. PubMed ID: 12673511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Starling resistors, autoregulation of cerebral perfusion and the pathogenesis of idiopathic intracranial hypertension.
    DE Simone R; Ranieri A; Bonavita V
    Panminerva Med; 2017 Mar; 59(1):76-89. PubMed ID: 27598891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of intracranial hypotension on cerebral blood flow in a feline model.
    Pomeranz S; Beni L; Shalit MN
    Acta Neurochir (Wien); 1993; 122(1-2):113-7. PubMed ID: 8333302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebrospinal fluid flow waveforms: effect of altered cranial venous outflow. A phase-contrast MR flow imaging study.
    Bhadelia RA; Bogdan AR; Wolpert SM
    Neuroradiology; 1998 May; 40(5):283-92. PubMed ID: 9638668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral venous blood outflow: a theoretical model based on laboratory simulation.
    Piechnik SK; Czosnyka M; Richards HK; Whitfield PC; Pickard JD
    Neurosurgery; 2001 Nov; 49(5):1214-22; discussion 1222-3. PubMed ID: 11846915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiologic principles for volume regulation of a tissue enclosed in a rigid shell with application to the injured brain.
    Grände PO; Asgeirsson B; Nordström CH
    J Trauma; 1997 May; 42(5 Suppl):S23-31. PubMed ID: 9191692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The venous hypothesis of hydrocephalus.
    Williams H
    Med Hypotheses; 2008; 70(4):743-7. PubMed ID: 17919832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercompartmental communication between the cerebrospinal and adjacent spaces during intrathecal infusions in an acute ovine in-vivo model.
    Podgoršak A; Trimmel NE; Oertel MF; Qvarlander S; Arras M; Eklund A; Weisskopf M; Schmid Daners M
    Fluids Barriers CNS; 2022 Jan; 19(1):2. PubMed ID: 34983575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.