These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 10342328)
1. Oxysterols in cap and core of human advanced atherosclerotic lesions. Garcia-Cruset S; Carpenter KL; Guardiola F; Mitchinson MJ Free Radic Res; 1999 May; 30(5):341-50. PubMed ID: 10342328 [TBL] [Abstract][Full Text] [Related]
2. Lipids and oxidised lipids in human atheroma and normal aorta. Carpenter KL; Taylor SE; Ballantine JA; Fussell B; Halliwell B; Mitchinson MJ Biochim Biophys Acta; 1993 Apr; 1167(2):121-30. PubMed ID: 8466938 [TBL] [Abstract][Full Text] [Related]
3. Lipids and oxidised lipids in human atherosclerotic lesions at different stages of development. Carpenter KL; Taylor SE; van der Veen C; Williamson BK; Ballantine JA; Mitchinson MJ Biochim Biophys Acta; 1995 May; 1256(2):141-50. PubMed ID: 7766691 [TBL] [Abstract][Full Text] [Related]
4. Oxysterol profiles of normal human arteries, fatty streaks and advanced lesions. Garcia-Cruset S; Carpenter KL; Guardiola F; Stein BK; Mitchinson MJ Free Radic Res; 2001 Jul; 35(1):31-41. PubMed ID: 11697115 [TBL] [Abstract][Full Text] [Related]
5. Selective distribution of oxysterols in atherosclerotic lesions and human plasma lipoproteins. Vaya J; Aviram M; Mahmood S; Hayek T; Grenadir E; Hoffman A; Milo S Free Radic Res; 2001 May; 34(5):485-97. PubMed ID: 11378532 [TBL] [Abstract][Full Text] [Related]
6. Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. Katz SS; Shipley GG; Small DM J Clin Invest; 1976 Jul; 58(1):200-11. PubMed ID: 932206 [TBL] [Abstract][Full Text] [Related]
7. Production of oxidized lipids during modification of low-density lipoprotein by macrophages or copper. Carpenter KL; Wilkins GM; Fussell B; Ballantine JA; Taylor SE; Mitchinson MJ; Leake DS Biochem J; 1994 Dec; 304 ( Pt 2)(Pt 2):625-33. PubMed ID: 7999000 [TBL] [Abstract][Full Text] [Related]
8. Macrophages, lipid oxidation, ceroid accumulation and alpha-tocopherol depletion in human atherosclerotic lesions. Carpenter KL; van der Veen C; Taylor SE; Hardwick SJ; Clare K; Hegyi L; Mitchinson MJ Gerontology; 1995; 41 Suppl 2():53-67. PubMed ID: 8821321 [TBL] [Abstract][Full Text] [Related]
9. Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions. Gniwotta C; Morrow JD; Roberts LJ; Kühn H Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):3236-41. PubMed ID: 9409317 [TBL] [Abstract][Full Text] [Related]
10. Relation of plaque lipid composition and morphology to the stability of human aortic plaques. Felton CV; Crook D; Davies MJ; Oliver MF Arterioscler Thromb Vasc Biol; 1997 Jul; 17(7):1337-45. PubMed ID: 9261265 [TBL] [Abstract][Full Text] [Related]
11. The oxysterols cholest-5-ene-3 beta,4 alpha-diol, cholest-5-ene-3 beta,4 beta-diol and cholestane-3 beta,5 alpha,6 alpha-triol are formed during in vitro oxidation of low density lipoprotein, and are present in human atherosclerotic plaques. Breuer O; Dzeletovic S; Lund E; Diczfalusy U Biochim Biophys Acta; 1996 Jul; 1302(2):145-52. PubMed ID: 8695664 [TBL] [Abstract][Full Text] [Related]
12. Development of the atherosclerotic core region. Chemical and ultrastructural analysis of microdissected atherosclerotic lesions from human aorta. Guyton JR; Klemp KF Arterioscler Thromb; 1994 Aug; 14(8):1305-14. PubMed ID: 8049192 [TBL] [Abstract][Full Text] [Related]
13. Lipids of human atheroma. 8. Oxidised derivatives of cholesteryl linoleate. Harland WA; Gilbert JD; Brooks CJ Biochim Biophys Acta; 1973 Sep; 316(3):378-85. PubMed ID: 4748843 [No Abstract] [Full Text] [Related]
14. The microdissection of large atherosclerotic plaques to give morphologically and topographically defined fractions for analysis. 1. The lipids in the isolated fractions. Smith EB; Slater RS Atherosclerosis; 1972; 15(1):37-56. PubMed ID: 5013277 [No Abstract] [Full Text] [Related]
15. Chemical composition and physical state of lipid deposits in atherosclerosis. Lundberg B Atherosclerosis; 1985 Jul; 56(1):93-110. PubMed ID: 4026939 [TBL] [Abstract][Full Text] [Related]
16. Human aortic fibrolipid lesions. Progenitor lesions for fibrous plaques, exhibiting early formation of the cholesterol-rich core. Bocan TM; Guyton JR Am J Pathol; 1985 Aug; 120(2):193-206. PubMed ID: 4025509 [TBL] [Abstract][Full Text] [Related]
17. Different effects of oxysterols on a model lipid raft - Langmuir monolayer study complemented with theoretical calculations. Wnętrzak A; Chachaj-Brekiesz A; Stępniak A; Kobierski J; Dynarowicz-Latka P Chem Phys Lipids; 2022 May; 244():105182. PubMed ID: 35182569 [TBL] [Abstract][Full Text] [Related]
18. Characterization of two unique cholesterol-rich lipid particles isolated from human atherosclerotic lesions. Chao FF; Blanchette-Mackie EJ; Chen YJ; Dickens BF; Berlin E; Amende LM; Skarlatos SI; Gamble W; Resau JH; Mergner WT Am J Pathol; 1990 Jan; 136(1):169-79. PubMed ID: 2297045 [TBL] [Abstract][Full Text] [Related]
19. Lipids of human atherosclerotic plaques and xanthomas: clues to the mechanism of plaque progression. Rapp JH; Connor WE; Lin DS; Inahara T; Porter JM J Lipid Res; 1983 Oct; 24(10):1329-35. PubMed ID: 6644183 [TBL] [Abstract][Full Text] [Related]
20. The fatty acids of total lipids and cholesterol esters from normal plasma and atheromatous plaques. TUNA N; RECKERS L; FRANTZ ID J Clin Invest; 1958 Aug; 37(8):1153-65. PubMed ID: 13563645 [No Abstract] [Full Text] [Related] [Next] [New Search]