These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 10342457)

  • 41. Transformations of electrosensory encoding associated with an adaptive filter.
    Sawtell NB; Williams A
    J Neurosci; 2008 Feb; 28(7):1598-612. PubMed ID: 18272681
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Imaging of objects through active electrolocation in Gnathonemus petersii.
    von der Emde G; Schwarz S
    J Physiol Paris; 2002; 96(5-6):431-44. PubMed ID: 14692491
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus.
    Fotowat H; Harrison RR; Krahe R
    J Neurosci; 2013 Aug; 33(34):13758-72. PubMed ID: 23966697
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential distribution of ampullary and tuberous processing in the torus semicircularis of Eigenmannia.
    Rose GJ; Call SJ
    J Comp Physiol A; 1992 Feb; 170(2):253-61. PubMed ID: 1583609
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology.
    Meek J; Grant K; Sugawara Y; Hafmans TG; Veron M; Denizot JP
    J Comp Neurol; 1996 Nov; 375(1):43-65. PubMed ID: 8913892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Mormyrid Optic Tectum Is a Topographic Interface for Active Electrolocation and Visual Sensing.
    Zeymer M; von der Emde G; Wullimann MF
    Front Neuroanat; 2018; 12():79. PubMed ID: 30327593
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation.
    Pusch R; von der Emde G; Hollmann M; Bacelo J; Nöbel S; Grant K; Engelmann J
    J Exp Biol; 2008 Mar; 211(Pt 6):921-34. PubMed ID: 18310118
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Organization of the gymnotiform fish pallium in relation to learning and memory: II. Extrinsic connections.
    Giassi AC; Duarte TT; Ellis W; Maler L
    J Comp Neurol; 2012 Oct; 520(15):3338-68. PubMed ID: 22430442
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of motor command feedback in electrosensory processing.
    Meek J; Grant K
    Eur J Morphol; 1994 Aug; 32(2-4):225-34. PubMed ID: 7803171
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mormyrid electrosensory lobe in vitro: morphology of cells and circuits.
    Han VZ; Bell CC; Grant K; Sugawara Y
    J Comp Neurol; 1999 Feb; 404(3):359-74. PubMed ID: 9952353
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo.
    Castelló ME; Caputi A; Trujillo-Cenóz O
    J Comp Neurol; 1998 Nov; 401(4):549-63. PubMed ID: 9826277
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distribution of serotonin in the brain of the mormyrid teleost Gnathonemus petersii.
    Meek J; Joosten HW
    J Comp Neurol; 1989 Mar; 281(2):206-24. PubMed ID: 2708574
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish.
    von der Emde G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):601-12. PubMed ID: 16645886
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A study of amplitude information-frequency characteristics for underwater active electrolocation system.
    Peng J
    Bioinspir Biomim; 2015 Nov; 10(6):066007. PubMed ID: 26531142
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pyramidal-cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs.
    Bastian J
    J Comp Physiol A; 1995 Jan; 176(1):63-73. PubMed ID: 7823309
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish.
    Worm M; Landgraf T; Prume J; Nguyen H; Kirschbaum F; von der Emde G
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6852-6857. PubMed ID: 29891707
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuronal responses to electrosensory input in mormyrid valvula cerebelli.
    Russell CJ; Bell CC
    J Neurophysiol; 1978 Nov; 41(6):1495-1510. PubMed ID: 731287
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolution of time-coding systems in weakly electric fishes.
    Kawasaki M
    Zoolog Sci; 2009 Sep; 26(9):587-99. PubMed ID: 19799509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures.
    Bell CC; Grant K; Serrier J
    J Neurophysiol; 1992 Sep; 68(3):843-58. PubMed ID: 1432052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.