BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 10342767)

  • 1. Spider (Araneus diadematus) cocoon silk: a case of non-periodic lattice crystals with a twist?
    Barghout JY; Thiel BL; Viney C
    Int J Biol Macromol; 1999; 24(2-3):211-7. PubMed ID: 10342767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical design of spider silks: from fibroin sequence to mechanical function.
    Gosline JM; Guerette PA; Ortlepp CS; Savage KN
    J Exp Biol; 1999 Dec; 202(Pt 23):3295-303. PubMed ID: 10562512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk.
    Thiel BL; Guess KB; Viney C
    Biopolymers; 1997 Jun; 41(7):703-19. PubMed ID: 9128438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies of spider silk proteins in the fiber.
    Parkhe AD; Seeley SK; Gardner K; Thompson L; Lewis RV
    J Mol Recognit; 1997; 10(1):1-6. PubMed ID: 9179774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ conformation of spider silk proteins in the intact major ampullate gland and in solution.
    Lefèvre T; Leclerc J; Rioux-Dubé JF; Buffeteau T; Paquin MC; Rousseau ME; Cloutier I; Auger M; Gagné SM; Boudreault S; Cloutier C; Pézolet M
    Biomacromolecules; 2007 Aug; 8(8):2342-4. PubMed ID: 17658884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins.
    Hayashi CY; Shipley NH; Lewis RV
    Int J Biol Macromol; 1999; 24(2-3):271-5. PubMed ID: 10342774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1937-47. PubMed ID: 18515724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing recombinant spider silk proteins to control assembly.
    Winkler S; Szela S; Avtges P; Valluzzi R; Kirschner DA; Kaplan D
    Int J Biol Macromol; 1999; 24(2-3):265-70. PubMed ID: 10342773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy.
    Shao Z; Young RJ; Vollrath F
    Int J Biol Macromol; 1999; 24(2-3):295-300. PubMed ID: 10342778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The unique ribbon morphology of the major ampullate silk of spiders from the genus Loxosceles (recluse spiders).
    Coddington JA; Chanzy HD; Jackson CL; Raty G; Gardner KH
    Biomacromolecules; 2002; 3(1):5-8. PubMed ID: 11866550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation, structure, wet-spinning, and molecular basis for supercontraction of spider dragline silk.
    Jelinski LW; Blye A; Liivak O; Michal C; LaVerde G; Seidel A; Shah N; Yang Z
    Int J Biol Macromol; 1999; 24(2-3):197-201. PubMed ID: 10342765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular chain orientation in supercontracted and re-extended spider silk.
    Grubb DT; Ji G
    Int J Biol Macromol; 1999; 24(2-3):203-10. PubMed ID: 10342766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk.
    Holland GP; Lewis RV; Yarger JL
    J Am Chem Soc; 2004 May; 126(18):5867-72. PubMed ID: 15125679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of repetitive proteins: spider silks from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae).
    Beckwitt R; Arcidiacono S; Stote R
    Insect Biochem Mol Biol; 1998 Mar; 28(3):121-30. PubMed ID: 9654736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like "spacer regions".
    Colgin MA; Lewis RV
    Protein Sci; 1998 Mar; 7(3):667-72. PubMed ID: 9541398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of the silk production pathway in the spider Nephila edulis.
    Vollrath F; Knight DP
    Int J Biol Macromol; 1999; 24(2-3):243-9. PubMed ID: 10342771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber.
    Hinman MB; Lewis RV
    J Biol Chem; 1992 Sep; 267(27):19320-4. PubMed ID: 1527052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual.
    Madsen B; Shao ZZ; Vollrath F
    Int J Biol Macromol; 1999; 24(2-3):301-6. PubMed ID: 10342779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders.
    Rousseau ME; Lefèvre T; Pézolet M
    Biomacromolecules; 2009 Oct; 10(10):2945-53. PubMed ID: 19785404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brown widow (Latrodectus geometricus) major ampullate silk protein and its material properties.
    Motriuk-Smith D; Lewis RV
    Biomed Sci Instrum; 2004; 40():64-9. PubMed ID: 15133936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.