These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10342768)

  • 1. The effect of post-spin drawing on spider silk microstructure: a birefringence model.
    Carmichael S; Barghout JY; Viney C
    Int J Biol Macromol; 1999; 24(2-3):219-26. PubMed ID: 10342768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins.
    Hayashi CY; Shipley NH; Lewis RV
    Int J Biol Macromol; 1999; 24(2-3):271-5. PubMed ID: 10342774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1937-47. PubMed ID: 18515724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brown widow (Latrodectus geometricus) major ampullate silk protein and its material properties.
    Motriuk-Smith D; Lewis RV
    Biomed Sci Instrum; 2004; 40():64-9. PubMed ID: 15133936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid immersion-polarization method for measuring birefringence applied to spider silks.
    Little DJ; Kane DM
    Opt Lett; 2011 Oct; 36(20):4098-100. PubMed ID: 22002398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual.
    Madsen B; Shao ZZ; Vollrath F
    Int J Biol Macromol; 1999; 24(2-3):301-6. PubMed ID: 10342779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-state NMR relaxation studies of Australian spider silks.
    Kishore AI; Herberstein ME; Craig CL; Separovic F
    Biopolymers; 2001-2002; 61(4):287-97. PubMed ID: 12115143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders.
    Rousseau ME; Lefèvre T; Pézolet M
    Biomacromolecules; 2009 Oct; 10(10):2945-53. PubMed ID: 19785404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy.
    Shao Z; Young RJ; Vollrath F
    Int J Biol Macromol; 1999; 24(2-3):295-300. PubMed ID: 10342778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spider (Araneus diadematus) cocoon silk: a case of non-periodic lattice crystals with a twist?
    Barghout JY; Thiel BL; Viney C
    Int J Biol Macromol; 1999; 24(2-3):211-7. PubMed ID: 10342767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk.
    Thiel BL; Guess KB; Viney C
    Biopolymers; 1997 Jun; 41(7):703-19. PubMed ID: 9128438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and post-translational modifications of the web silk protein spidroin-1 from Nephila spiders.
    dos Santos-Pinto JR; Lamprecht G; Chen WQ; Heo S; Hardy JG; Priewalder H; Scheibel TR; Palma MS; Lubec G
    J Proteomics; 2014 Jun; 105():174-85. PubMed ID: 24434585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein and amino acid composition of silks from the cob weaver, Latrodectus hesperus (black widow).
    Casem ML; Turner D; Houchin K
    Int J Biol Macromol; 1999; 24(2-3):103-8. PubMed ID: 10342753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientational order of Australian spider silks as determined by solid-state NMR.
    Bonev B; Grieve S; Herberstein ME; Kishore AI; Watts A; Separovic F
    Biopolymers; 2006 Jun; 82(2):134-43. PubMed ID: 16463360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus.
    La Mattina C; Reza R; Hu X; Falick AM; Vasanthavada K; McNary S; Yee R; Vierra CA
    Biochemistry; 2008 Apr; 47(16):4692-700. PubMed ID: 18376847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural studies of spider silk proteins in the fiber.
    Parkhe AD; Seeley SK; Gardner K; Thompson L; Lewis RV
    J Mol Recognit; 1997; 10(1):1-6. PubMed ID: 9179774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme diversity, conservation, and convergence of spider silk fibroin sequences.
    Gatesy J; Hayashi C; Motriuk D; Woods J; Lewis R
    Science; 2001 Mar; 291(5513):2603-5. PubMed ID: 11283372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition of the silk lipids of the spider Nephila clavipes.
    Schulz S
    Lipids; 2001 Jun; 36(6):637-47. PubMed ID: 11485169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational and orientational transformation of silk proteins in the major ampullate gland of Nephila clavipes spiders.
    Lefèvre T; Boudreault S; Cloutier C; Pézolet M
    Biomacromolecules; 2008 Sep; 9(9):2399-407. PubMed ID: 18702545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for diet effects on the composition of silk proteins produced by spiders.
    Craig CL; Riekel C; Herberstein ME; Weber RS; Kaplan D; Pierce NE
    Mol Biol Evol; 2000 Dec; 17(12):1904-13. PubMed ID: 11110907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.