These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 10342773)

  • 21. Microbial production of amino acid-modified spider dragline silk protein with intensively improved mechanical properties.
    Zhang H; Zhou F; Jiang X; Cao M; Wang S; Zou H; Cao Y; Xian M; Liu H
    Prep Biochem Biotechnol; 2016 Aug; 46(6):552-8. PubMed ID: 26460683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers.
    Teulé F; Addison B; Cooper AR; Ayon J; Henning RW; Benmore CJ; Holland GP; Yarger JL; Lewis RV
    Biopolymers; 2012 Jun; 97(6):418-31. PubMed ID: 22012252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization and expression of a cDNA encoding a tubuliform silk protein of the golden web spider Nephila antipodiana.
    Huang W; Lin Z; Sin YM; Li D; Gong Z; Yang D
    Biochimie; 2006 Jul; 88(7):849-58. PubMed ID: 16616407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of repetitive proteins: spider silks from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae).
    Beckwitt R; Arcidiacono S; Stote R
    Insect Biochem Mol Biol; 1998 Mar; 28(3):121-30. PubMed ID: 9654736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of a protein superfiber: spider dragline silk.
    Xu M; Lewis RV
    Proc Natl Acad Sci U S A; 1990 Sep; 87(18):7120-4. PubMed ID: 2402494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana.
    Shi J; Lua S; Du N; Liu X; Song J
    Biomaterials; 2008 Jun; 29(18):2820-8. PubMed ID: 18394700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular chain orientation in supercontracted and re-extended spider silk.
    Grubb DT; Ji G
    Int J Biol Macromol; 1999; 24(2-3):203-10. PubMed ID: 10342766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence-structure correlations in silk: Poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale.
    Bratzel G; Buehler MJ
    J Mech Behav Biomed Mater; 2012 Mar; 7():30-40. PubMed ID: 22340682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solid-state NMR relaxation studies of Australian spider silks.
    Kishore AI; Herberstein ME; Craig CL; Separovic F
    Biopolymers; 2001-2002; 61(4):287-97. PubMed ID: 12115143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Orientation, structure, wet-spinning, and molecular basis for supercontraction of spider dragline silk.
    Jelinski LW; Blye A; Liivak O; Michal C; LaVerde G; Seidel A; Shah N; Yang Z
    Int J Biol Macromol; 1999; 24(2-3):197-201. PubMed ID: 10342765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular cloning and expression of the C-terminus of spider flagelliform silk protein from Araneus ventricosus.
    Lee KS; Kim BY; Je YH; Woo SD; Sohn HD; Jin BR
    J Biosci; 2007 Jun; 32(4):705-12. PubMed ID: 17762143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of pH on the structure of the recombinant C-terminal domain of Nephila clavipes dragline silk protein.
    Gauthier M; Leclerc J; Lefèvre T; Gagné SM; Auger M
    Biomacromolecules; 2014 Dec; 15(12):4447-54. PubMed ID: 25337802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of the composition of silk proteins produced by spiders and insects.
    Craig CL; Hsu M; Kaplan D; Pierce NE
    Int J Biol Macromol; 1999; 24(2-3):109-18. PubMed ID: 10342754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From EST sequence to spider silk spinning: identification and molecular characterisation of Nephila senegalensis major ampullate gland peroxidase NsPox.
    Pouchkina NN; Stanchev BS; McQueen-Mason SJ
    Insect Biochem Mol Biol; 2003 Feb; 33(2):229-38. PubMed ID: 12535681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aspects of X-ray diffraction on single spider fibers.
    Riekel C; Bränden C; Craig C; Ferrero C; Heidelbach F; Müller M
    Int J Biol Macromol; 1999; 24(2-3):179-86. PubMed ID: 10342763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Study on construct and expression of synthetic genes encoding spider dragline silk in Escherichia coli].
    Li M; Zhang WX; Huang ZH; Huang JK
    Sheng Wu Gong Cheng Xue Bao; 2002 May; 18(3):331-4. PubMed ID: 12192868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy.
    Lefèvre T; Rousseau ME; Pézolet M
    Biophys J; 2007 Apr; 92(8):2885-95. PubMed ID: 17277183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial fibrous proteins: a review.
    Heslot H
    Biochimie; 1998 Jan; 80(1):19-31. PubMed ID: 9587659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spider dragline silk composite films doped with linear and telechelic polyalanine: Effect of polyalanine on the structure and mechanical properties.
    Tsuchiya K; Ishii T; Masunaga H; Numata K
    Sci Rep; 2018 Feb; 8(1):3654. PubMed ID: 29483536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of CO2 on the micro-structural properties of spider dragline silk: X-ray microdiffraction results.
    Riekel C; Rössle M; Sapede D; Vollrath F
    Naturwissenschaften; 2004 Jan; 91(1):30-3. PubMed ID: 14740101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.